基于广义凸下界估计的多模态差分进化算法

来源 :软件学报 | 被引量 : 0次 | 上传用户:lj200610819
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对多模态优化问题,提出了基于广义凸下界估计模型的改进差分进化算法.首先,基于模型变换方法将原优化问题转变为单位单纯形约束条件下的严格递增射线凸优化问题;其次,基于广义凸理论,利用差分进化算法中更新个体的适应度知识,建立原优化问题广义凸下界估计模型,设计实现了基于N-叉树的估计模型快速计算方法;进而,综合考虑原问题目标值与其估计值之间的差异,提出一种基于有偏采样的小生境指标,并设计区域进化树更新策略来保证算法的局部搜索能力.数值实验结果表明,提出的算法能够有效地发现并维持一定数量的满意解模态,动态地实现全局模态搜索到模态内局部增强的自适应平滑过渡.对于给出的测试问题,能够发现所有的全局最优解以及一些较好的局部极值解.
其他文献
目的比较分析成都、沈阳2市社区卫生服务机构不同服务对象处方用药数、用药方式和费用存在的问题,并提出建议。方法抽取调查前1周3天的门诊内科与儿科或全科处方;其中沈阳市5
高维目标优化是目前多目标优化领域的研究热点和难点.提出一种占优机制,即双极偏好占优用于处理高维目标优化问题.该占优机制同时考虑决策者的正偏好和负偏好信息,在非支配解之间