论文部分内容阅读
针对概率假设密度(PHD)滤波器在多目标跟踪问题中无法解决目标发生较大机动时的目标丢失问题,提出了一种多模型概率假设密度(MM-PHD)滤波器.这种MM-PHD滤波器在粒子PHD滤波器的基础上,使用多模型方法对滤波器中每个描述目标状态的粒子的状态进行更新,再将更新后的粒子代入传统的PHD滤波器中用于估计目标的PHD的分布.该滤波器结合PHD滤波器和多模型方法的特点,可用于目标数未知的多机动目标跟踪,且对目标的数量和状态的估计更加准确.多机动目标跟踪的仿真实验表明,与已有方法相比,该滤波器对目标数的估计与真