论文部分内容阅读
针对多传感器图像在像素级上的融合问题,将模糊数学理论引入到图像融合模型。该模型假定理想的融合后的图像包含场景所有的信息;将它乘上一个模糊因子,再加上随机噪声,可用来描述某一个成像传感器中获得的场景图像;不同的传感器对应不同的模糊因子和噪声。在此基础上,提出了建立在非多尺度分解框架下的图像融合算法。它以各传感器获取的图像作为输入条件,应用统计信号处理中的EM算法,求出针对不同传感器的噪声参数和模糊因子,通过迭代估计出融合的图像。实验结果显示,该算法获得的融合图像的互信息和联合熵分别达到3.5079和2