巨型天体也许来自另一个宇宙

来源 :飞碟探索 | 被引量 : 0次 | 上传用户:lsfgis
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  在充满宇宙的星系网中有一个巨大的空洞;一根由类星体构成的巨弦可以跨越数百亿光年;一个由剧烈爆发构成的环形占据了可见宇宙的6%……随着观测宇宙的能力日益强大,天文学家开始识别出比此前已知的更为巨大的结构。可是,它们中任何一个都不应该存在于那里。
  自从哥白尼提出了他的革命思想,即地球在群星之间并没有什么特别的地方,天文学家就把它视为根本。宇宙学原理则更进了一步,认为宇宙中没有任何地方是特殊的。当然,在局部上可以存在不同等级的系统,例如太阳系、星系和星系团,但当你进入更大的尺度,宇宙就应该表现出均匀性,且各向同性,没有巨大的星系壁,没有巨大的空洞,也没有巨大的结构。


一个由美国和匈牙利科学家组成的小组发现了由9个伽马射线暴组成的环状结构,跨度达50亿光年。伽马射线暴的分布如上国蓝点所示。

  这就难怪这些接二连三的最新发现让宇宙学家火冒三丈了。然而,对这个问题的解答也同样充满了争议。有人提出,这些大质量的结构是另一个维度投影出的幻象,是存在我们自身之外的现实的第一个诱人证据。如果是这样,那么这些庞然大物就并非是存在于我们宇宙中的物理实体,宇宙学原理依然适用。
  在现代宇宙学中有一个魔咒,它就是宇宙中的“受青睐区域”。自文艺复兴以来,所有的科学想法都一直在反对这个概念。“受青睐区域”会使得用爱因斯坦的广义相对论来研究引力在宇宙演化中的作用变得更加困难。如果你假设宇宙几乎是均匀的,那么求解爱因斯坦方程就会容易得多。不过目前,宇宙学原理仅仅是一个假设。没有具体的证据能佐证它是正确的,反倒是有越来越多的证据来否定它。


斯隆数字巡天绘制的宇宙三维图

  以之前提到的宇宙巨洞为例,它的直径达到了近20亿光年。相比于宇宙中星系的平均密度,这个巨洞中的星系数量少了约10000个。根据最新的观测数据,天文学家认为宇宙学原理只有在约 10 亿光年的尺度及以上才成立。此时,对于任意给定的体积,其中物质的平均总质量才基本相等。然而,存在一个比这一尺度还要大一倍的巨洞着实让整个画面显得突兀。10 多年前,天文学家在宇宙微波背景中发现了一个巨大的低温斑块,这个超巨洞兴许可以解释这个现象。
  然而,超巨洞其实还不算大。早在2012年,就有天文学家团队宣布发现了跨度超过40亿光年的巨大结构,其大小是超巨洞的2倍。那会是什么东西?显然,它肯定很不寻常。然而,这一次它并不是太空中一片空无一物的区域,反而特别拥挤,被称为巨类星体群。它包含有73个类星体——非常遥远的星系的明亮活跃中心区。20世纪80年代初,天文学家就已经知道,类星体有聚集在一起的趋势,但在此之前还从来没有发现它们会在这么大的尺度上成群。
  2015年年初,另一个天文学家团队发现了一个巨大的伽马射线暴群。伽马射线暴是发生在遥远星系中的短暂高能爆发现象。发生这些伽马射线暴的星系看上去似乎形成了一个直径达50亿光年的环形,占据了整个可观测宇宙的6%。天文学家并没有想到会发现这么大的结构。它的大小是宇宙学原理成立尺度的5倍。
  宇宙学原理是我们认识宇宙的根本基础,因此,这些有违宇宙学原理的现象深深地让天文学家和宇宙学家感到不安,即使这些现象的发现者也是如此。例如,由伽马射线暴组成的环形,有一种可能性是它们被其他星系包围着,由于这些星系过暗而没有被看到。这就像在一个黑暗的房间中均匀地放置着灯泡,当你走进房间时,仅有几只被点亮了,那么你很可能会就灯泡的分布得出错误的结论。这并不一定会破坏宇宙学原理。
  调和矛盾
  巨大的类星体群也引发了激烈的争论。有天文学家认为,它并非是一个真正的结构。2013年发表的一篇论文对发现这一结构的算法和数据进行了分析,计算了随机分布的类星体呈现出结构的概率。结果显示,这个概率相当高。不过,现在就下结论还太早。该类星体群的发现者认为,这一反对意见“保守且不现实”。他们认为,与模拟随机分布不同,所有的反对者应注意到一个事实,即这些类星体都拥挤在约3亿光年的尺度之内。
  和类星体群一样,超巨洞也被认为可以与宇宙学原理相调和。宇宙学原理并没有说不允许任何地方出现涨落,而是说宇宙在大尺度上的平均意义下是均匀的。总之,发现类似超巨洞这样的结构的概率并非为零,但数量不会很多。


宇宙微波背景辐射(CMB)

  然而,也有理论物理学家认为,无视这些宇宙巨型结构的做法也许是错误的。事实上,在宇宙学原理依然成立的情况下,它们仍能存在。我们要做的就是认为它们实际上并不存在。相反,它们其实是其他维度侵入我们宇宙的首批证据,是在我们均匀光滑的宇宙背景上留下的痕迹。
  这似乎是一个惊人的大胆建议,建立在坚实的理论基础上。一方面,超越四维时空的额外维度并非是什么新鲜事。几十年来,许多理论物理学家认为,额外维度的存在是我们调和爱因斯坦的广义相对论和20世纪物理学另一个成就——量子理论——的最大希望。前者描绘的是大尺度上的现象,后者描述的是微观世界。这两个看似完全不同的概念的联姻会催生出一个可以描述宇宙各个尺度的理论,它常被称为“终极理论”或“万物理论”。   一个热门的候选者是M理论,它是弦理论的一个扩展。M理论认为,我们生活在一个十一维的宇宙中,其他的7个维度紧紧地蜷缩在一起而无法被观测到。这是一个优雅且在数学上吸引人的框架,有一批有影响的支持者。但它也有一个重大缺陷:缺乏可以用来检验的坚实预言。弦理论的另一个延伸——膜理论,也许可以做到这一点,并就此解决宇宙学原理的困境。
  膜理论的核心思想是,我们所知的宇宙是一张飘浮在更高维时空中的四维膜,在这个更高维的时空中还存在其他的膜。这样的想法可以与现有的引力理论相一致。事实上,即使是有无穷多个额外维度,你仍然可以回到广义相对论。
  虽然其他的膜也占据着额外维度,但它们无法被直接探测到。该理论认为,我们也许只能探测到当邻近的膜与我们所在的膜重叠时出现的效应。


多重宇宙想象图

  宇宙间的重叠
  那么,这对解决宇宙学原理的问题有什么帮助呢?为了测量遥远天体的距离,天文学家利用一种效应,被称为红移。天文学家可以使用分光计分解天体发出的光,分析其光谱。由于宇宙的膨胀,正在远离我们的任何天体发出的光都会被拉长,其谱线就会向光谱的红端移动。距离我们越远的天体,其退行的速度就越快,其红移的量就越大。如果天文学家看到许多天体都具有相同的红移,会将此解释成某种形式的结构,就像伽马射线暴环或者是巨类星体群。当有另一个膜与我们自己的重叠时,一个膜中的光子会对另一个膜中的带电粒子施加一个作用力,会改变氢原子能级间的距离。当电子在这些能级之间跃迁时,它们会发射或吸收光子,产生我们用来测量距离的谱线,而这些谱线可能是扭曲的。
  如果膜的重叠使得能级间距缩小,发射出的光子的波长就会变长,而这个红移量和宇宙的膨胀没有任何关系。如果我们观测这一区域的红移,却没有考虑这一点,依然按照传统的模式分析测量到的红移,就会系统性地高估膜重叠区域中天体的距离。
  如果这个模型是正确的,那么膜重叠区域会出现有些天体聚集在某一个红移值上,而在其他红移值上则没有天体。
  这就导致即使是均匀的宇宙,看上去也会包含大质量结构和超巨洞的错觉。这一下子就解释了巨类星体群、伽马射线暴环和超巨洞的起源,这些结构和潜在的膜重叠相符。
  期待证据
  当然,这绝非是一目了然的事情。为了达到最终的目标,这个理论中包含了许多的假设,其中一些可能有点太过理想。另外,此前也有人对膜理论中的一些假设提出了严厉的批评,其中不乏弦理论家。尽管如此,这个模型肯定是可以检验的。
  通过观测天空中的高密度区和与之毗邻的低密度区,可以对这一理论进行检验。如果在所有情况下红移测量结果间的差异都是一样的,那么它很可能表明,我们的膜与另一个膜存在重叠。
  斯隆数字巡天已经完成了有史以来最详细的宇宙三维图,有科学家正在计划研究其中的红移数据库,来寻找支持这一理论的证据。这将会是证明我们的宇宙并不唯一的重要证据,它不仅能解释天文观测中一些令人困惑的结果,还能为抽象的弦理论打下实验的基础。
  不过,把宇宙中这些最大的结构化整为零地解释的方法可能会招来新的麻烦。例如,发现超出我们自身所在的膜会对人类自身在宇宙中本已脆弱的地位造成严重的挑战,并且使得宇宙均匀性的概念变得没有意义。毕竟,在一个包含有相互作用膜的巨大多重宇宙中,宇宙学原理很有可能将不再成立。
  延伸阅读
  宇宙微波背景低温斑块
  宇宙微波背景是大爆炸遗留下来的辐射,保留着宇宙年龄仅为约40万年时的样子。它上面独特的印迹代表着宇宙婴儿时期温度稍高和稍低的区域。根据我们对宇宙这一时期的认识,这些温度起伏应该都很小,而且彼此之间差异不大。然而,在2004年,科学家使用威尔金森微波各向异性探测器在宇宙微波背景中发现了低温斑块,其温度要比其他区域低得多。一开始,他们认为这可能是测量结果的误差。此后,欧洲空间局的普朗克卫星也观测到了这个低温斑块。
  有理论认为,在这个低温斑块的方向上存在一个超巨洞。为了抵达地球,宇宙微波背景辐射的光子必须穿过这个超巨洞。由于宇宙在加速膨胀,当光子从这个超巨洞穿出时,它会发现周围的物质密度比它刚进入这个超巨洞时低,其经历的引力势减小,它们的能量也相应地减小。当利用光子的能量来计算一个源的温度时,这种减小使我们错误地认为其原本所在的区域温度比其他地方低。
  多重宇宙中的生命
  确认多重宇宙的存在可能会引出一些关于生命起源和我们在宇宙中位置的有趣问题。据我们目前的认识,我们宇宙的物理学定律精妙得让人起疑——物理常数中的任何一个若出现微小的变化就会使得液态水变得非常罕见,导致复杂的有机化学反应无法进行,或使得物质无法聚集到一起。科学界常用“弱人择原理”解释这一问题。简单地说,如果宇宙定律不具有我们所观测到的特有行为,那么我们就不会存在进而观测到它们,因此也就不会如此惊讶了。与此同时,各种“强人择原理”更提出了一些进一步假设,出于某种原因,宇宙必然会演化出对生命有利的参数特性。借用一个量子理论的想法,这甚至可能是因为存在有自我意识的观测者是宇宙存在的一个前提。
  如果我们所在的这个宇宙仅仅是无穷多个多重宇宙——尤其是永恒暴胀或多重世界下的多重宇宙——中的一个,就可以显著地改变这场辩论中的论据。一个宇宙拥有和我们相同的参数的概率从极不可能到确定无疑不等,而与此同时,出现任何其他参数组合的概率也是如此。那么,在这些其他的宇宙中也存在生命吗?一些科学家认为,其可能性也许远比此前认为的更高。采用计算机模拟来研究有着不同基本常数的宇宙的演化,结果发现稳定的物质形式和碳化学反应在许多极端的情况下仍能出现。
其他文献
日本东京大学的研究小组近日发表了昴星团望远镜的观测结果,认为它在夜空中观测到的时长仅千分之一秒的闪光电波,可能源于距离地球50亿光年处发生的天体大爆炸。  该现象被称作“快速射电暴”。在对射电暴的电波进行解析后,研究者计算出了从50亿光年处到地球的宇宙空间中分布的电子数量。这也为“宇宙中大多数已知物质并非星球或星系,而是看不见的星系际物质”这一假说提供了佐证。  这一现象自数年前被发现以来已被观测
期刊
在宇宙形成早期,太空中充满了正在爆炸的恒星,以及旋转的尘埃——这也是现代宇宙的组成元素,但早期宇宙中的星系要少得多。一颗稳定恒星附近的行星将持续受到密集宇宙辐射的攻击,这些辐射既来自行星系内部,也来自外部。  得克萨斯大学艾尔帕索分校的天体物理学家保罗·梅森博士提出一个理论,认为在黑洞形成、宇宙扩张的过程中,宇宙辐射的数量也随之下降。不仅释放出的辐射量下降,它需要填充的空间也减少了。此外,随着黑洞
期刊
2016年3月9日出现的日全食在印度尼西亚可见,9月1日将出现仅中非地区可见的日环食。2016年,大家只能看到两次微弱的半影食,分别出现在3月23日和9月16日。  任何有关自然界中奇观景象的名单都少不了日食和月食。这类现象一年当中最多可以出现7次,比如1982年;至少也会出现4次,正如2016年的情况。中国部分地区的爱好者可在3月9日观测到程度不等的日偏食。由于月球亮度变化微弱,两次半影月食并不
期刊
对6名按说应该进行过2.4亿千米的太空旅行、且事先完全是陌生人的团队成员来说,我们的空间非常小。在100多天的时间里,我们一直在HI-SEAS(夏威夷太空探索与模拟仿真基地)进行由美国航空航天局资助的实验项目,实验地点海拔2440米,是一座没有实时通信、大小约为一套三居室公寓的穹顶建筑。这样做有助于人们了解人类如何在往返火星的旅途中生存下来。我们还会在这里度过8个月。  我们并不是在测试自己身体的
期刊
这两个“会怎么样”的答案都是“不会怎么样”。  一个质量相当于月球质量的黑洞,它的事件视界大约相当于一粒沙子那么大。根据黑洞相关数值对应表格,问题中所说的这个月球黑洞,它的大小大约介于中沙和细沙之间。这个大小足以穿过《美国材料标准》中70号及以上的滤网。我估计,这个月球黑洞实际上完全能穿过任何型号的滤网,只不过会在穿过的同时顺手把滤网毁了罢了。不过毁了就毁了吧,又能怎么样呢?  虽然月球变成了黑洞
期刊
你是否曾经想过,曾经的某个决定如果做了另一种选择,现在的生活是什么样子?这些“假如”有没有可能在其他地方上演?在过去的几年中,多重宇宙的想法得到了越来越多的支持,根据这个假设,我们的宇宙只不过是无数宇宙中的一个。那么,多重宇宙是如何产生呢?其中的宇宙之间又有着什么样的相似性或者差异呢?  多重宇宙会让人构想出许多相互平行的现实,其中一些和我们的只有着细微的差别。量子力学的多重世界解释确实预言了这种
期刊
2014年以来,物理学界的争论出现了一个令人担忧的走势。面对把基本理论应用于可观测宇宙时的困难,一些研究人员呼吁改变理论物理学中已有的一些信条。他们开始明确地提出,如果一个理论足够优美且能够解释现象,那么它不需要实验的检验。这无疑打破了数百年来通过实证鉴定科学知识的哲学传统。我们决不同意。如科学哲学家卡尔·波普尔(Karl Popper)所说,理论的科学性必须是可证伪的。  一些弦理论家是“优美已
期刊
在我负责“怨恨”计划期间,到我办公室访问的那些人很像一支国际纵队。在美国执行秘密任务的英国皇家空军的两名情报官员带来了满满6页纸的问题,他们急于知道这些问题的答案。派驻在英国、法国、德国的空军情报官员因公返回美国时,常常会带回一堆非机密的飞碟资料。一个经常往来美国和欧洲之间的非军方情报人员,将我收集的关于UFO的畅销报纸和杂志送往德国。作为回报,我会收到欧洲发生的目击事件的最新消息。这些目击事件从
期刊
这是一个进退两难的问题:如果宇宙始于一个量子粒子的爆炸,高速地膨胀出时空和各种各样的物质,那么为什么它会如此适宜生命生存?对中世纪的哲学家来说,宇宙的完美性恰恰是证明上帝存在的关键。如此适合智慧生命的宇宙必定是一个强大而仁慈的神的恩赐。或者,正如时下流行的神学所认为的:这一切绝不可能是意外。  现代物理学也纠结于这个“精调问题”,并为此提供了自己的答案。如果只存在一个宇宙,那么发现它是如此适宜生命
期刊
有了开普勒空间望远镜任务后,“发现新行星”的报道已经不那么令人感到兴奋了。毕竟在最近20年的时间里,利用开普勒空间望远镜,天文学家已经发现了大约2000颗新行星。但是,当加州理工学院宣布他们发现了一颗新行星时,还是引起了轰动,因为新发现的这颗行星就在太阳系中,是太阳系的一部分。对于太阳系,之前你或许认为我们已经对它观测得十分详尽了。  很明显,事实并非如此。加州理工学院的行星科学家康斯坦丁·巴特金
期刊