论文部分内容阅读
为解决基于二维图像处理的计算机辅助诊疗系统(CAD)仅考虑每幅图像自身包含的信息而忽略不同扫描层之间的联系,以及数据处理过程中的海量计算问题,提出一种新的基于快速三维主成分分析(3D PCA)的有效肺CT病灶检测算法。该算法首先引入高维张量奇异值分解(HOSVD)设计3D PCA;然后以提取出的三维空间特征点为种子点,进行区域增长以获取完整的疑似病灶区域;最后,根据医学图像具体特征,设计了一种HOSVD的简化分解算法。对来自吉林省肿瘤医院的10个典型病例的五百余幅临床CT图像进行了实验,并将实验结果