论文部分内容阅读
大气系统中云的辐射特性以及分布情况决定了天气预报的准确性和气候监测的有效性。云的检测与识别对大气探测和大气遥感至关重要。本研究旨在通过提取可见光云图的纹理特征、颜色特征和sift特征自动训练分类器,实现对卷云、积云、层云和晴空的分类识别。本研究采用极限学习机(extreme learning machine)对样本进行学习,并在不同条件下进行云分类识别。实验结果表明:当纹理特征、颜色特征和sift特征融合在一起时,获得了比单独使用纹理特征、颜色特征和sift特征以及它们两两组合时更好的识别效果,识别正确率