论文部分内容阅读
机械中普遍存在的转速大波动工况是影响机械设备故障诊断的关键性难题,现有方法在计算效率及诊断误差等方面存在缺陷。深度学习理论能够利用深度神经网络实现数据的自动特征提取和分类。结合深度学习的优势,提出了一种专门用于处理转速大波动工况下的智能故障诊断方法。该方法首先根据机械转速信息提取频域样本;然后利用频域样本训练批标准化的深度神经网络,用批标准化技术中的平移和缩放参数能来处理转速大波动下频域信号的频移和幅变特性,并减轻深度网络内部协变量转移问题,加快网络收敛;最后采用两组特殊设计的转速大波动工况下的滚动轴承试