论文部分内容阅读
基于多尺度信息特征和混合模型,将自组织混合网络(SOMN)应用于合成孔径雷达(SAR)图像的分割。首先对SAR图像的多尺度序列进行多尺度随机建模,以此进行多尺度特征提取;然后对其建立混合模型,并经过SOMN进行学习研究得到混合模型的参数;最后再利用Bayesian分类器,对SAR图像进行分割。实验结果表明,本文方法能够充分地利用SAR图像多尺度序列中不同类型地形的统计信息,进而明显地改进了图像的分割质量。