论文部分内容阅读
为实现直馏减压馏分油(VGO)中噻吩硫化物组成分布的快速分析,收集160个具有代表性的VGO样本,测定其常规物性及其含有噻吩硫化物的组成信息,构造160组数据集,并将其随机划分为训练集和测试集。以VGO的常规物性为输入特征,采用随机森林回归算法(RFR)分别构建预测VGO中苯并噻吩、二苯并噻吩、萘苯并噻吩以及总噻吩质量分数的模型。利用训练集样本的袋外估计,进行模型超参数的寻优。结果表明,模型对VGO中3种噻吩硫化物和总噻吩质量分数的预测标准偏差(RMSEP)分别为0.268%、0.131%、0.111%、