基于硬件虚拟化的虚拟机进程代码分页式度量方法

来源 :计算机应用 | 被引量 : 4次 | 上传用户:lvyuguo_sh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
云环境下恶意软件可利用多种手段篡改虚拟机(VM)中关键业务代码,威胁其运行的稳定性。传统的基于主机的度量系统易被绕过或攻击而失效,针对在虚拟机监视器(VMM)层难以获取虚拟机中运行进程完整代码段并对其进行完整性验证的问题,提出基于硬件虚拟化的虚拟机进程代码分页式度量方法。该方法以基于内核的虚拟机(KVM)作为虚拟机监视器,在VMM层捕获虚拟机进程的系统调用作为度量流程的触发点,基于相对地址偏移解决了不同版本虚拟机之间的语义差异,实现了分页式度量方法在VMM层透明地验证虚拟机中运行进程代码段的完整性。
其他文献
针对大图结构特征如何影响划分效果这一问题,提出一种通过顶点度分布特征来描述大图结构特征的方法。首先,基于真实的图数据产生若干顶点数和边数相同、但结构特征不同的仿真数据集,通过实验计算真实图与仿真图之间的相似度,证明该方法对描述真实大图结构特征的有效性。然后,通过Hash和点对交换划分算法,验证图结构特征与划分效果之间的关系。当点对交换划分算法执行到5万次时,划分一个有6301个顶点和20777条边
脉冲神经元是一种新颖的人工神经元模型,其有监督学习的目的是通过学习使得神经元激发出一串通过精确时间编码来表达特定信息的脉冲序列,故称为脉冲序列学习。针对单神经元的脉冲序列学习应用价值显著、理论基础多样、影响因素众多的特点,对已有脉冲序列学习方法进行了综述对比。首先介绍了脉冲神经元模型与脉冲序列学习的基本概念;然后详细介绍了典型的脉冲序列学习方法,指出了每种方法的理论基础和突触权值调整方式;最后通过
学习的过程不应是被动的接收,而应是主动的思考、发现、创造,主动地探究新知,追求进步与发展。只有这种主动学习,才能真正理解所学知识,促进智力和能力的发展。而语文课堂互动教学
针对国内各大主流空调企业室外用开式轴流风机的发展趋势,结合Z401系列不同结构叶轮,系统地进行性能试验,详细给出了性能试验的原理,并给出测试得到的外部性能。试验结果显示开式