论文部分内容阅读
卷积神经网络(CNN)及循环神经网络(RNN)在自然语言方面存在着广泛的应用,但仅依靠CNN无法有效的处理自然语言中的上下文信息,RNN则在应用过程中常会出现梯度消失、梯度爆炸的现象,从而限制了文本分类的准确率。基于此,构建了基于超深卷积神经网络(VDCNN)和双向门控循环(BiGRU)神经网络的混合模型。模型首先利用VDCNN的进行文本向量局部特征的提取,利用BiGRU提取与上下文信息相关的全局特征;然后将提取到的局部特征与全局特征进行融合;最后将融合后的特征信息放入softmax函数实现对于文本