论文部分内容阅读
随机森林是近些年发展起来的新集成学习算法,具有较好的分类准确率。针对该算法计算复杂度较高的不足,提出了一种基于谱聚类划分的随机森林算法。首先,利用聚类效果较好的谱聚类算法对原始样本集的每一类进行聚类处理。然后,在每一聚类簇中随机选取一个样本作为代表,组成新训练样本集合。最后,在新训练样本集上训练随机森林分类器。该算法通过谱聚类技术对原始样本进行了初步划分,将位置相近的多个样本用簇内的一个样本代表,较大程度地减少了训练样本的个数。在Corel Image图像识别数据集上的实验表明,算法可以用较少的分类