论文部分内容阅读
提出了一种基于深度学习的门牌检测方法,以实现室内环境中移动机器人的全局定位。具体步骤为:基于MobileNet-SSD算法对单目相机获取的图像进行门牌区域检测;提出一种改进的旋转投影方法用于倾斜图像校正;通过kNN(k-Nearest Neighbors)算法进行门牌号识别;根据事先采集的各个门牌的正视模板图片进行SURF(Speeded Up Robust Features)特征点匹配,进而实现基于n点透视(PnP)问题的相机位姿求解;根据坐标变换实现移动机器人的全局定位。使用移动机器人在室内办公