论文部分内容阅读
提出一种深度增强学习方法来解决网络数据包分类问题。本方法DeepCut使用简洁的表示形式来编码状态和动作空间,并有效地探索候选决策树以针对全局目标进行优化。DeepCut能构建针对特定规则集和性能优化目标的决策树。实验结果表明,与现有的方法相比,DeepCut能有效地减少数据包的分类时间,同时减少了算法运行的内存占用。