Ultra?Low?Dose Pre?Metallation Strategy Served for Commercial Metal?Ion Capacitors

来源 :纳微快报(英文版) | 被引量 : 0次 | 上传用户:EchoChina
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Sacrificial pre-metallation strategy could compensate for the irrevers-ible consumption of metal ions and reduce the potential of anode, thereby elevating the cycle performance as well as open-circuit voltage for full metal ion capacitors (MICs). However, suffered from mas-sive-dosage abuse, exorbitant decomposition potential, and side effects of decomposition residue, the wide applicationof sacrificial approach was restricted. Herein, assisted with density functional theory calculations, strongly coupled interface (M–O–C, M = Li/Na/K) and electron donating group have been put forward to regulate the band gap and highest occupied molecular orbital level of metal oxalate -(M2C2O4), reducing polarization phenomenon and Gibbs free energy required for decomposition, which eventually decrease the practical decomposition potential from 4.50 to 3.95 V. Remarkably, full sodium ion capacitors constituted of commercial materials (activated carbon//hard carbon) could deliver a prominent energy density of 118.2 Wh -kg?1 as well as excellent cycle stability under an ultra-low dosage pre-sodiation reagent of 15–30 wt% (far less than currently 100 wt%). Noteworthily, decomposition mechanism of sacrificial compound and the relative influence on the system of MICs after pre-metallation were initially revealed by in situ differential electrochemical mass spectrometry, offering in-depth insights for comprehending the function of cathode additives. In addition, this breakthrough has been successfully utilized in high performance lithium/potassium ion capacitors with -Li2C2O4/K2C2O4 as pre-metallation reagent, which will convincingly promote the commercialization of MICs.
其他文献
The rapid advance of mild aqueous zinc-ion batteries (ZIBs) is driv-ing the development of the energy storage system market. But the thorny issues of Zn anodes, mainly including dendrite growth, hydrogen evolution, and corro-sion, severely reduce the perf
可重构光分叉复用器(Reconfigurable Optical Add/Drop Multiplexer,ROADM)大量应用在承载网络中,虽然具有集成度高、传输效率高、容量大的优势,但在实际现网中网络结构复杂,对开通测试等环节要求较高.从ROADM网络站点开通测试的主要项目开展讨论,进一步分析故障处理的场景和主要思路,通过从浅到深的分析来提高网络维护能力.
通过冷阴极数字射线成像与常规射线检测对比试验,证明了该技术的可靠性和辐射防护风险控制的优越性,是理想的射线检测方法.同时开展了冷阴极数字射线成像技术在其他应用场景的初步研究.
Carbon- and silica-based nanomaterials possess a set of merits including large surface area, good structural stability, diversified morphology, adjustable structure, and biocompatibility. These outstanding features make them widely applied in different fi
高速公路上自动驾驶车辆与普通车辆相互作用会影响车流的总体运行效率,考虑不同比例的自动驾驶车流,构建元胞自动机模型对混合车流进行数值模拟研究.分析单车道的车流特性,当车流密度大于0.1时,在相同的车流密度下自动驾驶车辆占比越大,车流整体速度和交通流量越大.引入安全系数对双车道车流特征进行仿真发现,当车流密度在0.1~0.8时,车辆之间的相互作用很频繁,车辆变道概率更大.仿真不同长度自动驾驶车队在混合流中运行,发现当自动驾驶车辆占比在10% ~30%,自动驾驶车队长度为10和12时,车辆的速度差异、换道频率较
Hydrogen with high energy density and zero carbon emission is widely acknowledged as the most promising candidate toward world\'s carbon neutrality and future sustainable eco-society. Water-splitting is a constructive tech-nology for unpolluted and high
With the advent of the 5G era and the rise of the Internet of Things, various sensors have received unprecedented attention, especially wearable and stretchable sensors in the healthcare field. Here, a stretchable, self-healable, self-adhesive, and room-t
Silicon monoxide (SiO) is an attractive anode material for next-generation lithium-ion batteries for its ultra-high theoreti-cal capacity of 2680 mAh -g?1. The studies to date have been limited to electrodes with a rela-tively low mass loading (< 3.5 mg -
With the emer-gence of wearable electronics, flexible energy storage materials have been extensively studied in recent years. However, most stud-ies focus on improving the electro-chemical properties, ignoring the flexible mechanism and structure design f
分析比较了美国机械工程师协会锅炉压力容器规范与核电厂核岛机械设备无损检测标准(NB/T20003.2标准)相关规范中超声焊缝检测部分内容,为核电标准国产化后NB/T20003.2标准的运用及有关单位和检验人员更加深入地理解和正确执行标准提供参考、讨论.