结合极值区域检测的血管内超声图像并行分割

来源 :中国图象图形学报 | 被引量 : 0次 | 上传用户:hanqianggege
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的血管内超声(IVUS)图像动脉壁边界分割不仅对血管壁和斑块特征的定量分析至关重要,而且对血管弹性定性分析和重建动脉3维模型也是必需的。针对IVUS图像传统分割方法建模复杂、运算量大且需分别设计算法串行提取内膜和外膜的缺点,本文提出基于极值区域检测的IVUS图像并行分割方法。方法本文方法包含极值区域检测、极值区域筛选以及轮廓拟合3部分。对单帧IVUS图像提取极值区域,经面积筛选后得到候选区域,并将区域的局部二值模式(LBP)特征、灰度差异和边缘周长的乘积作为筛选矢量在候选区域中提取代表管腔和介质的
其他文献
目的 随着城市交通拥堵问题的日益严重,建立有效的道路拥堵可视化系统,对智慧城市建设起着重要作用.针对目前基于车辆密度分析法、车速判定法、行驶时间判定法等模式单一,可
目的图像因各种因素的影响存在一定程度的噪声,而噪声会在图像分割时影响待分割目标的边缘识别,导致分割结果难以达到理想状态。针对以上问题,在距离规则化水平集(DRLSE)演化模型的基础上,提出一种将各向异性扩散散度场信息融合到DRLSE模型中的新模型。方法将水平集函数初始化为分段常数表达式,设定演化方程中的参数和水平集函数演化过程中的迭代时间步长Δt。随后将常值权系数α替换为融合各项异性扩散散度场信息
研究背景和目的:肾间质纤维化(Renal interstitial fibrosis,RIF)是各种慢性肾病随病程进展到最终阶段的相同病理生理表现,严重威胁着患者健康。该病变表现肾间质中肌成纤维