一种从马尔可夫聚类簇发现潜在WEB社区特征的方法

来源 :计算机学报 | 被引量 : 0次 | 上传用户:yanguangkai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在分析了目前一些典型的社区发现算法的基础上,通过对无主题条件下的隐含社区发现算法的研究,提出将基于流的社区特征和马尔可夫图形聚类算法(MCL)的簇结合起来寻找Web隐含社区的方法.将镜像或近似镜像页面的删除放在图形聚类之后,大大减少了比较的代价.然后,在聚类簇的基础上,使用判定每个簇内元素的筛选算法产生可能的社区候选集合.实验表明,该方法是可行的,可以发现许多存在的社区.
其他文献
首先通过讨论时态XML查询数据模型TXQDM,提出了基于结点有效时间的前缀编码方案.以此为基础,引入TXQDM结点间的基于时态连通的等价关系和基于时态包含的拟序关系,建立了时态X
从微分几何角度考察与参数化形式无关的统计模型流形的固有复杂度,指出模型流形的Gauss-Kroneker曲率可以完全刻画模型流形在一点处的全部性质,进而分析了曲率与体积的关系;