论文部分内容阅读
对立方体数据的分析挖掘由于具有广泛的现实应用而日益得到人们的重视.基于对立方体切片数据的分析应用问题,提出了一种新的核心聚类分析方法.核心聚类分析主要针对传统聚类模型得到的结果类簇不够紧密和需要预先定义类簇的数目等不足之处,而点对敏感聚类模型(pair-wise cluster)算法复杂度是NP难的问题而设计.核心聚类模型将数据集合中的点划分为若干不相交的核心点集和边界点集,同一核心点集内任意点对的相似度大于阈值σ,而不同核心点集的点对相似度小于阈值σ.核心聚类模型挖掘出的核心点集是紧密类簇,并且具备良好