论文部分内容阅读
用户级综合能源系统多元负荷存在随机性、波动性相对更大的特点,现有预测方法不能得到很好的预测效果.为此提出一种基于核主成分分析(KPCA)、二次模态分解、深度双向长短期记忆(DBiLSTM)神经网络和多元线性回归(MLR)的多元负荷预测模型.首先,运用自适应噪声的完全集合经验模态分解分别对电、冷、热负荷进行本征模态分解,对分解得到的强非平稳分量运用变分模态分解进行再次分解.然后,运用KPCA对天气、日历规则特征集提取主成分实现数据降维;将分解得到的非平稳、平稳分量结合特征集主成分分别用DBiLSTM神经网络、MLR进行预测.最后,将预测结果进行重构得到最终预测结果.通过实际算例分析可知,与其他模型相比,所提模型具有更高的预测精度.