基于改进的RFBNet行人检测算法

来源 :智能计算机与应用 | 被引量 : 0次 | 上传用户:shajia0902
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
深度学习方法在行人检测领域取得了不错的成绩,但还存在一些问题需进一步解决例如遮挡、难负样本等问题。本文提出基于注意力机制的RFBNet行人检测算法,针对部分遮挡问题,可以取得更好的检测效果。在注意力机制的引导下,网络更加倾向于可见部分的行人信息抑制背景信息从而避免其误导网络训练进一步降低负样本误检为正样本的概率。为了将模型能够部署在轻量级设备上本文使用参数量更少的轻量网络模型。在PASCAL VOC行人数据集上实验结果显示通过增加通道注意力机制,检测平均精准率增加了 0.51%;当模型参数量裁剪为0
其他文献
超大直径泥水平衡盾构以往主要用于越江、越海工程,当用于城市中心区域快速道路的修建时盾构推进引起的地面沉降或隆起以及由此对地面以上建构筑物的影响问题应当引起重视。本文基于上海北横通道新建工程,聚焦于神经网络方法在盾构推进引起地面沉降中的预测,分析了 BP、GA-BP两种神经网络方法在盾构推进过程中刀盘上方地面沉降中的预测效果,对比了两种方法在计算原理、数据拟合能力等方面的适用性与局限性,在此基础上通过对遗传算法的种群个体选择机制进行优化提出了改进的GA-BP神经网络方法,说明了该方法的网络训练稳定性与快速收