论文部分内容阅读
提出了一种结合位置先验与稀疏表示的人脸图像超分辨率算法,可对单帧输入的低分辨率人脸图像基于训练集进行超分辨率重建。利用压缩感知理论中的信号分解方法,,将稀疏表示与人脸位置先验信息相结合,使用经过分类的超完备冗余字典,来分别稀疏逼近输入信号的块向量结构。利用最佳的K项原子,线性组合重建出高分辨率图像块。最后按照图像块最初在人脸的位置,将它们拼接为整体人脸。在CAS-PEAL-R1人脸图库上的实验结果表明,该算法使用相对较少的原子,就可以重建出质量较好的高分辨率人脸图像。