论文部分内容阅读
为了提高大数据在存在类间闭频繁项干扰下的分类提取能力,提出了一种基于频繁项自适应学习的大数据优化分类算法.采用离散高斯随机序列分析方法构建大数据信息流模型,对大数据分布式时间序列进行奇异值分解和特征空间重组,将大规模的数据问题变为一系列小规模特征分解运算.采用分段预白化匹配滤波算法进行类间闭频繁项干扰抑制处理,提高大数据分类的局部平稳性和泛化性.在重组的特征空间中提取大数据信息流的高阶累积量特征,采用模糊K均值聚类方法对提取的特征量进行分类处理,实现了大数据分类算法的改进.仿真结果表明,采用该算进行大数据