论文部分内容阅读
以2014年Landsat8遥感影像为数据源,研究了深圳市森林碳储量遥感反演模型的构建及其空间分布情况,对城市生态系统碳循环研究具有重要意义。采用分层随机抽样的方式布设168个样地,结合外业样地数据,从遥感影像中提取31个植被指数作为自变量,分别构建了多元线性回归模型、Logistic回归模型和Radical Basis Function(RBF)径向基函数神经网络模型,进而估算该地区的森林碳储量并比较分析。结果表明,RBF神经网络模型的估算精度最高,决定系数最大且均方根误差最小,分别为0.829t