论文部分内容阅读
深度卷积神经网络(Deep convolutional neural network,DCNN)在目标检测任务上使用目标的全标注来训练网络参数,其检测准确率也得到了大幅度的提升.然而,获取目标的边界框(Bounding-box)标注是一项耗时且代价高的工作.此外,目标检测的实时性是制约其实用性的另一个重要问题.为了克服这两个问题,本文提出一种基于图像级标注的弱监督实时目标检测方法.该方法分为三个子模块:1)首先应用分类网络和反向传递过程生成类别显著图,该显著图提供了目标在图像中的位置信息;2)根据类别显著