论文部分内容阅读
利用近红外光谱(NIR)技术结合BP神经网络定量预测了杉木中的综纤维素、木质素和微纤丝角。首先对杉木的原始近红外光谱数据进行卷积(Savitzky-Golay)平滑和二阶导数处理,然后利用小波变换压缩,将由171个数据点组成的近红外光谱压缩为86个数据点,最后用BP神经网络建模,采用Leave-n-out交叉验证法对模型进行验证,并讨论了隐含层神经元个数、学习速率、动量因子和学习次数对所建BP网络的影响。用所建的网络模型预测了测试集中杉木样本的综纤维素、木质素和微纤丝角 ,预测的相关系数R2值分别为0.9