论文部分内容阅读
传统的日志分析技术在处理海量数据时存在计算瓶颈。针对该问题,研究了基于大数据技术的日志分析方案:由多台计算机完成日志文件的存储、分析、挖掘工作,建立了一个基于Hadoop开源框架的并行网络日志分析引擎,在MapReduce模型下重新实现了IP统计算法和异常检测算法。实验证明,在数据密集型计算中使用大数据技术可以明显提高算法的执行效率和增加系统的可扩展性。