论文部分内容阅读
传统的道路交通事故预测是对交通事故次数及其造成的损失的历史趋势进行预测,针对其不能反映交通事故与实时交通特性关系、不能有效地预防事故发生的问题,提出一种基于AdaBoost分类器的交通事故实时预测的方法。首先,将交通道路划分为正常、危险两种交通状态,利用实时采集的交通流数据作为特征变量对不同的状态进行表征,将事故的实时预测问题转化为分类问题;然后,采用Parzen窗非参数估计的方法对两种状态在不同时间尺度下候选交通流特征的概率密度函数(PDF)进行估计,利用基于概率分布的可分性判据分析估计的密度函数,选择