论文部分内容阅读
随着大数据时代的到来,信息过载问题日益凸显,个性化的推荐服务是解决该问题的有效手段之一,因为其简单、高效的特点,越来越受到人们的重视.协同过滤是个性化推荐的常用手段,协同过滤推荐算法通过研究用户的喜好,实现从海量数据资源中为用户推荐其感兴趣的内容,在很多领域中都得到了广泛应用.但是,冷启动和数据稀疏依然是其面临的难题,在某些领域中,出现推荐算法效率偏低,推荐准确度下降问题,导致用户满意度偏低.针对这个问题,本文提出了用户属性相似度概念及移动图书馆中的活跃相似度,并融入了基于内容过滤的算法思想,提出了一种改