论文部分内容阅读
针对新浪、腾讯等微博平台出现大量广告的问题,提出一个微博广告过滤模型。通过对数据的预处理,将采集到的微博原始数据转换成干净且计算机易处理的数据。在预处理阶段,根据微博文本的特点,对停用词表进行改进,以提高查准率,然后基于支持向量机构建一个训练分类器对数据进行训练,经过不断的学习和反馈,取得较好的分类效果。实验结果表明,该模型进行广告过滤时准确率超过90%,效果优于基于关键字的方法。