论文部分内容阅读
介绍了支持向量机用于解决模式分类问题的基本原理,在对传统的多分类方法OVO(one—versus—one)深入分析的基础上,针对其存在的不可分类区问题,提出了一种改进的模式分类方法KSVM(KNN—SVM),将k-近邻方法嵌入到SVM算法中解决不可分类区问题,进一步提高了分类准确率。应用KSVM分类方击进行模拟电路的故障诊断,实验结果验证了该方法的有效性和实用性。