论文部分内容阅读
针对社会网络中存在的正负二元边值关系,基于共同邻居指标法在识别社会网络符号边值问题中的优势,提出了一种符号网络下的边值预测方法(ICN-Predict)。该符号网络边值预测方法有效结合了节点符号密度属性和网络拓扑结构特征,避免了共同邻居法预测选值敏感性问题。通过实验仿真发现,ICN-Predict预测方法扩大了符号网络边值预测的适用面,提高了边值预测精度,同时表明进一步提高预测精度的关键在于提高负值边的预测准确率。