基于机器学习理论的机械故障诊断方法综述

来源 :现代制造工程 | 被引量 : 0次 | 上传用户:say_8139
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
现代机械设备日趋精密化、智能化,同时工作环境与工况也越来越复杂,一旦零/部件出现故障,不但会对设备本身造成伤害,还有可能造成人员伤亡等事故;因此,及时有效地发现并处理设备故障有着重要的意义。随着人工智能技术的发展,以机器学习为核心的机械故障诊断技术飞速发展。对常用的机器学习理论进行了梳理和总结,主要介绍了基于浅层学习下的人工神经网络、支持向量机及Boosting算法和基于深度学习下的卷积神经网络、自动编码器及深度置信网络这6大类机器学习模型,分析比较了这些模型的优缺点,并总结了各个模型在机械故障诊断领域的
其他文献