论文部分内容阅读
摘要:随着城市高层建筑越来越多,建筑类型与功能越来越复杂,结构体系更加多样化,高层建筑的结构设计也成为结构工程师设计工作的主要重点和难点。本文根据以往的实践经验,对高层建筑结构设计过程中常见问题进行分析与探讨。
关键词:高层建筑;结构设计;常见问题
[TU208.3]
引言
现代高层建筑设计是一个长期、复杂甚至循环往复的过程。在设计高层建筑中应当充分地把握各种尺度,结合人的尺度,满足人的安全、舒适、美观的要求。如何做出既舒适、安全同时又符合人们精神物质要求且经济实用住宅的设计,以适应住宅市场的变化,满足住宅消费需求,成为高层建筑设计人员必须要解决的首要问题。这就要求结构设计人员在工作中严格要求自己, 不断学习新规范,力求掌握更为合理的设计方法。
一、正确认识高层建筑的受力问题
选择合理的结构类型高层建筑从本质上讲是一个竖向悬臂结构, 垂直荷载主要使结构产生轴向力与建筑物高度大体为线性关系;水平荷载使结构产生弯矩。从受力特性看, 垂直荷载方向不变,随建筑物的增高仅引起量的增加;而水平荷载可来自任何方向, 当为均布荷载时, 弯矩与建筑物高度呈二次方变化。从侧移特性看, 竖向荷载引起的侧移很小, 而水平荷载当为均布荷载时, 侧移与高度成四次方变化。由此可以看出, 在高层结构中, 水平荷载的影响要远远大于垂直荷载的影响, 水平荷载是结构设计的控制因素, 结构抵抗水平荷载产生的弯矩、剪力以及拉应力和压应力应有较大的强度外, 同时要求结构要有足够的刚度, 使随着高度增加所引起的侧向变形限制在结构允许范围内。
二、短肢剪力墙的设置问题
在规范中,对墙肢截面高厚比为5~8的墙定义为短肢剪力墙,且对短肢剪力墙在高层建筑中的应用增加了相当多的限制,因此,在高层建筑设计中,结构工程师应尽可能少采用或不用短肢剪力墙。但对小高层住宅采用短肢抗震墙结构体系,只要抗侧力构件布局合理仍然是比较理想的一种结构体系,但在地震区,高层建筑中,剪力墙不宜过少,墙肢不宜过短,因此不应设计仅有短肢剪力墙的高层建筑,要求设置剪力墙筒体(或一般剪力墙),形成短肢剪力墙与筒体和一般剪力墙共同抵抗水平力的结构。
短肢墙的布置应合理、对称、均匀,力求质量中心与刚度中心重合。短肢剪力墙结构的抗震薄弱部位是建筑平面外边缘的角部处的墙肢,当有扭转效应时,会加剧已有的翘曲变形,使其墙肢首先开裂,因此应加墙其抗震构造措施,如减小轴压比、增加纵筋和箍筋的配筋率。主要抗侧力结构(筒体或长墙)一般利用楼、电梯间,但要注意刚度的均衡性,不要集中在一处布置,使建筑产生过大的扭转效应。同时筒体要有足够的刚度,其平面尺寸不宜过小,要使筒体和一般剪力墙承受的第一振型底部地震倾覆力矩不宜小于结构总底部地震倾覆力矩的5 0%,形成多道抗震防线。短肢墙受力以承担竖向荷载为主,承担水平荷载为辅,其截面尺寸要适当,墙肢截面高度与厚度之比宜在5~8左右为好,且墙厚不应小于200MM,当墙肢截面高度与厚度比小于等于3时,应按柱的要求进行设计。短肢墙在重力荷载代表值作用下产生的轴力设计值的轴压比,抗震等级为一、二、三时分别不宜大于0.5、0.6、0.7,对于无翼缘或端柱的一字形短肢剪力墙,因其延性更为不利,因此轴压比限值要相应降低0.1。短肢剪力墙的抗震等级应比一般剪力墙的抗震等级提高一级采用,主要目的是从构造上改善短肢剪力墙的延性。对于短肢剪力墙的剪力设计值,不仅底部加强部位应按规范调整,其他各层也要调整,一、二级抗震等级应分别乘以增大系数1.4和1.2,主要目的是避免短肢剪力墙过早剪坏。
短肢墙之间的梁应根据跨高比的不同分别按连梁、框架梁计算内力和配筋(即一般情况下当短剪力墙洞口形成的跨高比小于5的连梁,应按连梁进行设计;当跨高比不小于5时,宜按框架梁进行设计)。短肢墙仍属于剪力墙的范畴,配筋可采用一般剪力墙的计算方法,但是对于长宽比小于3的短肢墙则必须按柱的方法进行设计。
三、轴向变形问题
任何建筑结构在外力作用下产生的位移都包括弯曲、轴向变形和剪切变形三部分。在低层建筑结构设计中,通常只考虑弯曲变形,而忽略铀向变形和剪切变形的影响,因为一般结构构件的轴力和剪力产生影响较小,可不考虑。而高层建筑由于层数多、轴力大,再加上沿高度积累的轴向变形显著,轴向变形会对高层结构的内力产生很大影响。此外,高层结构中的剪力墙的截面也往往很大。因此,剪切变形的影响不可忽略。
采用框架体系和框架—剪力墙体系的高层建筑中,框架中柱的轴向压力往往大于边柱的铀向压力,中柱的轴向压缩变形大于边柱的轴向压缩变形。当房屋很高时,此种差异轴向变形将会达到较大的数值,其后果相当于连续梁的中间支座产生沉陷,从而使连续梁中间支座处的负弯矩值减小,跨中正弯矩值和端支座负弯矩值增大。故在高层建筑设计中,轴向变形不能不考虑。
在高层建筑结构的力学计算中,根据所选计算手段,所计算的构件变形因素是有区别的。对于简化助手计算方法,一般只计算最基本的变形。采用计算机方法计算时,计算的变形因素要多一些。当用空间协同工作方法时,考虑了梁的弯曲、剪切变形,考虑了柱、剪力墙的弯曲、剪切和轴向变形;当用完全的三维空间分析方法时,除考虑了前面全部变形外,还增加了梁、柱、剪力墙的扭转变形,以及剪力墙墙体截面的翘曲变形。
四、嵌固端的设置问题
高层建筑结构嵌固端的确定对结构计算结果有很大的影响,虽然无论选择哪个部位作为结构嵌固端,都可以通过结构计算程序获得相对准确的计算结果,但是我们期望的是计算结果较真实地反映结构的实际情况,从而使结构体系安全合理。正确选取结构嵌固端是结构设计中的一个重要环节。
高层建筑在进行结构分析计算之前应该先确定结构嵌固端的所在位置,而影响嵌固端位置的因素也很多,如有没有地下室,地下室层数,基础形式等。结构嵌固端的条件通常情况结构嵌固端通是选择在地下室顶盖标高处,但地下室顶盖能否真正成为结构嵌固端是有条件的。设计中也经常遇到结构转换层设于大底盘的屋顶标高处的情况。地下室顶板作为上部结构嵌固部位结构计算中,地下室顶板作为上部结构嵌固部位时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍。地下室顶板标高与室外地坪的高差不能太大,极端的情况如半地下室则首层楼面一般不能成为结构嵌固端,除非其高差仅为1—3级台阶高度时才可能考虑;地下室顶板结构应为梁板体系,楼板厚度不宜小于180mm,砼强度等级不宜低于C30,应采用双层双向配筋,每层每方向配筋率不宜小于0.25%。地下室周边土应对地下室侧墙有足够的约束。上述半地下室顶板不能成为结构嵌固端的原因通常就是不满足此条件。
五、高层建筑结构设计的抗震问题
地震是难以预测以及精确计算的,地震作用而使建筑物承受的力,因地震作用的大小、地基的坚固度,以及建筑物固有的周期而异。地震作用的大小被評估为静态的水平力,通常都会随着建筑物的高度的增加,建筑物水平力的比例就会变小。对于某一方向的地震作用,相同方向的抗震要素的抵抗,会与其刚度成正比。1.施加于建筑物的地震作用
由震源传来的地震波,当地表附近的地基越软弱时就越会增强,而且随着建筑物增高及固有周期变长时,摇动的力就变小,而且越到建筑物的上方楼层,摇动的力(加速度)就有变大的倾向。基于这些因素的考虑,定出施加于建筑物的地震作用,这被当作施加于建筑物各楼层的水平力来评估。
2.抗震因素的配置
毫无疑问,建筑物会从各方向承受地震作用,如果将整体建筑物当作是二维框架的集合体去考虑力的传递就容易使人理解。与地震作用的水平方向平行的框架负担着水平力,各层柱子与抗震墙等则按刚度比例负担地震作用。
3.构架的变形抵抗
对结构体施加水平力时,若超过其支承的弹性限度,变形就会急遽地增加,达到最大强度。在设计时,对于频度高的地震,通常都停留在支承力的弹性极限以下,大地震时则不要超过其最大强度。
4.构件的强度与韧性关系
强度大的抗震因素不需要韧性。墙壁与斜撑的韧性较小,框架构架的韧性较大。
5.抗震因素平面上的平衡抗震因素平面上的平衡不良的建筑物,在承受地震作用时容易产生伴随扭力回转的变形,刚性弱的部分就会产生很大的变形,使该部分的破坏有增大之虞。由于地震作用是属于惯性力,因此力的作用中心要与重心一致。所谓的在平面上采取平衡,也就是地震作用的中心,亦即重心与抗震因素之刚度的中心(被称作刚心)必须一致。即使平面上的刚性(框架的刚度)一致的建筑物,当它向后退缩时,由于下方楼层的重心会从中心偏离,将会产生失稳。此外,如抗震墙与钢骨框架之类的刚度大的抗震因素呈偏心配置的建筑物,就容易产生失稳。
6.抗震因素之剖面上的平衡
当抗震因素的刚度在上下方向不均匀,且硬楼层部与软楼层部混合在一起时,地震作用就会集中于软楼层部,使该楼层部分承受的力及变形变大,会有增大破坏之虞。尤其是二楼以上的部分墙壁多且一楼没有墙壁的建筑物,称作悬挑建筑物,有许多在地震时会发生一楼瓦解的破坏。建筑物由几种构架构成,且各种构架的上下方向能够采取平衡时则很理想,而以各层之框架的刚度总和采取平衡亦可。
结束语
近年来,高层建筑发展十分迅速,建筑造型新颖独特,建筑物的高度与规模不断增加。随着高层建筑进一步的发展,满足高层建筑的形式、材料、力学分析模型都将日趋复杂且多元化。实践表明在高层建筑的结构设计与施工过程中,设计、技术人员只有概念清晰,措施得当,才能不断地完善和发展高层建筑。
参考文献:
[1]混凝土结构设计规范(GB50010-2002),中国建筑工业出版社,2002.
[2]建筑抗震设计规范(GB50011-2001).建筑工业出版社,2002.
[3]高层建筑混凝土结构技术规程(JGJ3-2002).建筑工业出版社,2002.
[4]骆鴻雁,现代住宅建筑设计问题探讨[J].科技创新与应用 2012 年30 期.
[5]赵东,住宅建筑设计的实践与思考[J].中华民居 2011 年08期.
关键词:高层建筑;结构设计;常见问题
[TU208.3]
引言
现代高层建筑设计是一个长期、复杂甚至循环往复的过程。在设计高层建筑中应当充分地把握各种尺度,结合人的尺度,满足人的安全、舒适、美观的要求。如何做出既舒适、安全同时又符合人们精神物质要求且经济实用住宅的设计,以适应住宅市场的变化,满足住宅消费需求,成为高层建筑设计人员必须要解决的首要问题。这就要求结构设计人员在工作中严格要求自己, 不断学习新规范,力求掌握更为合理的设计方法。
一、正确认识高层建筑的受力问题
选择合理的结构类型高层建筑从本质上讲是一个竖向悬臂结构, 垂直荷载主要使结构产生轴向力与建筑物高度大体为线性关系;水平荷载使结构产生弯矩。从受力特性看, 垂直荷载方向不变,随建筑物的增高仅引起量的增加;而水平荷载可来自任何方向, 当为均布荷载时, 弯矩与建筑物高度呈二次方变化。从侧移特性看, 竖向荷载引起的侧移很小, 而水平荷载当为均布荷载时, 侧移与高度成四次方变化。由此可以看出, 在高层结构中, 水平荷载的影响要远远大于垂直荷载的影响, 水平荷载是结构设计的控制因素, 结构抵抗水平荷载产生的弯矩、剪力以及拉应力和压应力应有较大的强度外, 同时要求结构要有足够的刚度, 使随着高度增加所引起的侧向变形限制在结构允许范围内。
二、短肢剪力墙的设置问题
在规范中,对墙肢截面高厚比为5~8的墙定义为短肢剪力墙,且对短肢剪力墙在高层建筑中的应用增加了相当多的限制,因此,在高层建筑设计中,结构工程师应尽可能少采用或不用短肢剪力墙。但对小高层住宅采用短肢抗震墙结构体系,只要抗侧力构件布局合理仍然是比较理想的一种结构体系,但在地震区,高层建筑中,剪力墙不宜过少,墙肢不宜过短,因此不应设计仅有短肢剪力墙的高层建筑,要求设置剪力墙筒体(或一般剪力墙),形成短肢剪力墙与筒体和一般剪力墙共同抵抗水平力的结构。
短肢墙的布置应合理、对称、均匀,力求质量中心与刚度中心重合。短肢剪力墙结构的抗震薄弱部位是建筑平面外边缘的角部处的墙肢,当有扭转效应时,会加剧已有的翘曲变形,使其墙肢首先开裂,因此应加墙其抗震构造措施,如减小轴压比、增加纵筋和箍筋的配筋率。主要抗侧力结构(筒体或长墙)一般利用楼、电梯间,但要注意刚度的均衡性,不要集中在一处布置,使建筑产生过大的扭转效应。同时筒体要有足够的刚度,其平面尺寸不宜过小,要使筒体和一般剪力墙承受的第一振型底部地震倾覆力矩不宜小于结构总底部地震倾覆力矩的5 0%,形成多道抗震防线。短肢墙受力以承担竖向荷载为主,承担水平荷载为辅,其截面尺寸要适当,墙肢截面高度与厚度之比宜在5~8左右为好,且墙厚不应小于200MM,当墙肢截面高度与厚度比小于等于3时,应按柱的要求进行设计。短肢墙在重力荷载代表值作用下产生的轴力设计值的轴压比,抗震等级为一、二、三时分别不宜大于0.5、0.6、0.7,对于无翼缘或端柱的一字形短肢剪力墙,因其延性更为不利,因此轴压比限值要相应降低0.1。短肢剪力墙的抗震等级应比一般剪力墙的抗震等级提高一级采用,主要目的是从构造上改善短肢剪力墙的延性。对于短肢剪力墙的剪力设计值,不仅底部加强部位应按规范调整,其他各层也要调整,一、二级抗震等级应分别乘以增大系数1.4和1.2,主要目的是避免短肢剪力墙过早剪坏。
短肢墙之间的梁应根据跨高比的不同分别按连梁、框架梁计算内力和配筋(即一般情况下当短剪力墙洞口形成的跨高比小于5的连梁,应按连梁进行设计;当跨高比不小于5时,宜按框架梁进行设计)。短肢墙仍属于剪力墙的范畴,配筋可采用一般剪力墙的计算方法,但是对于长宽比小于3的短肢墙则必须按柱的方法进行设计。
三、轴向变形问题
任何建筑结构在外力作用下产生的位移都包括弯曲、轴向变形和剪切变形三部分。在低层建筑结构设计中,通常只考虑弯曲变形,而忽略铀向变形和剪切变形的影响,因为一般结构构件的轴力和剪力产生影响较小,可不考虑。而高层建筑由于层数多、轴力大,再加上沿高度积累的轴向变形显著,轴向变形会对高层结构的内力产生很大影响。此外,高层结构中的剪力墙的截面也往往很大。因此,剪切变形的影响不可忽略。
采用框架体系和框架—剪力墙体系的高层建筑中,框架中柱的轴向压力往往大于边柱的铀向压力,中柱的轴向压缩变形大于边柱的轴向压缩变形。当房屋很高时,此种差异轴向变形将会达到较大的数值,其后果相当于连续梁的中间支座产生沉陷,从而使连续梁中间支座处的负弯矩值减小,跨中正弯矩值和端支座负弯矩值增大。故在高层建筑设计中,轴向变形不能不考虑。
在高层建筑结构的力学计算中,根据所选计算手段,所计算的构件变形因素是有区别的。对于简化助手计算方法,一般只计算最基本的变形。采用计算机方法计算时,计算的变形因素要多一些。当用空间协同工作方法时,考虑了梁的弯曲、剪切变形,考虑了柱、剪力墙的弯曲、剪切和轴向变形;当用完全的三维空间分析方法时,除考虑了前面全部变形外,还增加了梁、柱、剪力墙的扭转变形,以及剪力墙墙体截面的翘曲变形。
四、嵌固端的设置问题
高层建筑结构嵌固端的确定对结构计算结果有很大的影响,虽然无论选择哪个部位作为结构嵌固端,都可以通过结构计算程序获得相对准确的计算结果,但是我们期望的是计算结果较真实地反映结构的实际情况,从而使结构体系安全合理。正确选取结构嵌固端是结构设计中的一个重要环节。
高层建筑在进行结构分析计算之前应该先确定结构嵌固端的所在位置,而影响嵌固端位置的因素也很多,如有没有地下室,地下室层数,基础形式等。结构嵌固端的条件通常情况结构嵌固端通是选择在地下室顶盖标高处,但地下室顶盖能否真正成为结构嵌固端是有条件的。设计中也经常遇到结构转换层设于大底盘的屋顶标高处的情况。地下室顶板作为上部结构嵌固部位结构计算中,地下室顶板作为上部结构嵌固部位时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍。地下室顶板标高与室外地坪的高差不能太大,极端的情况如半地下室则首层楼面一般不能成为结构嵌固端,除非其高差仅为1—3级台阶高度时才可能考虑;地下室顶板结构应为梁板体系,楼板厚度不宜小于180mm,砼强度等级不宜低于C30,应采用双层双向配筋,每层每方向配筋率不宜小于0.25%。地下室周边土应对地下室侧墙有足够的约束。上述半地下室顶板不能成为结构嵌固端的原因通常就是不满足此条件。
五、高层建筑结构设计的抗震问题
地震是难以预测以及精确计算的,地震作用而使建筑物承受的力,因地震作用的大小、地基的坚固度,以及建筑物固有的周期而异。地震作用的大小被評估为静态的水平力,通常都会随着建筑物的高度的增加,建筑物水平力的比例就会变小。对于某一方向的地震作用,相同方向的抗震要素的抵抗,会与其刚度成正比。1.施加于建筑物的地震作用
由震源传来的地震波,当地表附近的地基越软弱时就越会增强,而且随着建筑物增高及固有周期变长时,摇动的力就变小,而且越到建筑物的上方楼层,摇动的力(加速度)就有变大的倾向。基于这些因素的考虑,定出施加于建筑物的地震作用,这被当作施加于建筑物各楼层的水平力来评估。
2.抗震因素的配置
毫无疑问,建筑物会从各方向承受地震作用,如果将整体建筑物当作是二维框架的集合体去考虑力的传递就容易使人理解。与地震作用的水平方向平行的框架负担着水平力,各层柱子与抗震墙等则按刚度比例负担地震作用。
3.构架的变形抵抗
对结构体施加水平力时,若超过其支承的弹性限度,变形就会急遽地增加,达到最大强度。在设计时,对于频度高的地震,通常都停留在支承力的弹性极限以下,大地震时则不要超过其最大强度。
4.构件的强度与韧性关系
强度大的抗震因素不需要韧性。墙壁与斜撑的韧性较小,框架构架的韧性较大。
5.抗震因素平面上的平衡抗震因素平面上的平衡不良的建筑物,在承受地震作用时容易产生伴随扭力回转的变形,刚性弱的部分就会产生很大的变形,使该部分的破坏有增大之虞。由于地震作用是属于惯性力,因此力的作用中心要与重心一致。所谓的在平面上采取平衡,也就是地震作用的中心,亦即重心与抗震因素之刚度的中心(被称作刚心)必须一致。即使平面上的刚性(框架的刚度)一致的建筑物,当它向后退缩时,由于下方楼层的重心会从中心偏离,将会产生失稳。此外,如抗震墙与钢骨框架之类的刚度大的抗震因素呈偏心配置的建筑物,就容易产生失稳。
6.抗震因素之剖面上的平衡
当抗震因素的刚度在上下方向不均匀,且硬楼层部与软楼层部混合在一起时,地震作用就会集中于软楼层部,使该楼层部分承受的力及变形变大,会有增大破坏之虞。尤其是二楼以上的部分墙壁多且一楼没有墙壁的建筑物,称作悬挑建筑物,有许多在地震时会发生一楼瓦解的破坏。建筑物由几种构架构成,且各种构架的上下方向能够采取平衡时则很理想,而以各层之框架的刚度总和采取平衡亦可。
结束语
近年来,高层建筑发展十分迅速,建筑造型新颖独特,建筑物的高度与规模不断增加。随着高层建筑进一步的发展,满足高层建筑的形式、材料、力学分析模型都将日趋复杂且多元化。实践表明在高层建筑的结构设计与施工过程中,设计、技术人员只有概念清晰,措施得当,才能不断地完善和发展高层建筑。
参考文献:
[1]混凝土结构设计规范(GB50010-2002),中国建筑工业出版社,2002.
[2]建筑抗震设计规范(GB50011-2001).建筑工业出版社,2002.
[3]高层建筑混凝土结构技术规程(JGJ3-2002).建筑工业出版社,2002.
[4]骆鴻雁,现代住宅建筑设计问题探讨[J].科技创新与应用 2012 年30 期.
[5]赵东,住宅建筑设计的实践与思考[J].中华民居 2011 年08期.