论文部分内容阅读
为了辅助医生对肿瘤治疗方案和靶区形状的设计,我们研究了PET/CT图像联合自动分割,将计算机自动分割的结果作为一个较客观的依据。传统的测地线活动轮廓模型(GAC)具有边缘演化迅速,对弱边界也能准确分割的优点,但是该算法只能利用一种模态的图像信息进行分割。本研究算法在传统的测地线活动轮廓模型基础上进行改进,重新设计其边缘函数,综合利用了CT信息与PET信息,使算法利用两种模态的医学图像信息进行联合分割。由于边缘函数中结合了两种信息,所以算法的演化收敛速度有一定的提升,分割出的边缘也更加合理,较单一PE