幂函数y=xα(α∈R+)在区间[0,+∞)的分析定义及性质

来源 :广西梧州师范高等专科学校学报 | 被引量 : 0次 | 上传用户:xdlclub
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
运用自然对数函数y=lnx在区间(0,+∞)的分析定义及性质,构造性给出幂函数y=xn(n∈N+)和y=xα(α∈R+)在区间[0,+∞)的分析定义,并给出它们的有关性质与证明.
其他文献
In the paper, we consider the existence and uniqueness results for Caputo fractional differential equations with integral boundary value condition. The sufficie
In this paper,we investigate the Cahn-Hilliard equation defined on the half space and subject to the Neumann boundary and initial condition.For given initial da
We prove the global existence of a unique mild solutions to the incompressible MHD equations when the initial data are less than the viscosity coefficients in a
为了发掘影响水稻产量及其相关性状的QTL和重要的染色体区间,本研究利用以大穗型品种川香29B(籼稻)为母本,Lemont(粳稻)为父本构建了包含184个株系的F8重组自交系群体。在2009年,对单株有效穗数、穗长、一次枝梗数、二次枝梗数、每穗实粒数、每穗总粒数、着粒密度、结实率、千粒重和单株产量10个性状进行了QTL分析。主要研究结果如下:(1)构建了一张水稻全基因组的遗传连锁图,该图谱包含98个
In this paper, we derive the singular Moser-Trudinger inequality which involves the first eigenvalue and several singular points, and further prove the existenc
In this paper,using the Girsanov transformation argument,we establish Talagrand-type T2 inequalities under the d2 metric and the uniform metric d∞ for the law
In this paper,we consider a time-fractional backward problem with a fractional Laplacian.We propose a fractional Tikhonov regularization method for solving this
本研究以遗传背景为珍汕97和IRAT109的18份水稻材料(16份近等基因系和2份亲本)为研究对象,在盆栽条件下,研究其在正常水分和干旱处理下的根部性状特性,调查其形态特征和生理特性,并在收获期取样考察其产量与产量构成因素,综合分析各试验材料的抗旱表现,探讨其抗旱性差异的原因。同时以这18份水稻材料为研究对象,进行盆栽试验,探讨正常水分条件下水分利用效率差异的原因。主要研究结果如下:1)干旱胁迫下
The quasineutral limit and the mixed layer problem of a three-dimensional drift-diffusion model is discussed in this paper.For the Neumann boundaries and the ge