二维Kemmer谐振子在非对易平面下的精确解

来源 :贵州大学学报:自然科学版 | 被引量 : 0次 | 上传用户:lollipop7919
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文分析非对易平面下自旋为1的二维Kemmer谐振子,应用合流超几何函数确定体系的能级和波函数。结果表明,非对易参数θ对体系的能级和波函数有影响。
其他文献
聚羧酸类减水剂具有低掺量、高减水率、坍落度损失小等优点,是高性能混凝土中不可缺少的组分,是混凝土外加剂研究的热点领域。本文从作用机理、合成工艺和结构参数与性能三个
本文利用集值映射图像之间的Hausdorff距离定义了度量,在图像拓扑意义下,将有限理性应用到上半连续集值映射的不动点问题,证明了大多数的不动点问题(Baire分类的意义下)都是结构稳
在n值R0-命题逻辑系统L?n中,给出公式关于有限理论的一个更为直观的Γ-绝对真度概念,讨论它的一些重要性质和推理规则,并利用Γ-绝对真度定义公式间的Γ-绝对相似度和伪距离.
MRI和CT图像成为医生对于病情诊断的重要方法和手段,在MRI和CT图像中,病变情况等关键信息大都出现在图像的软组织区域中。为了有效保护医学图像软组织区域的信息完整性且不受篡改,提出一种基于整数小波变换域(integer wavelet transform,IWT)的双水印信息隐藏算法。算法首先针对MRI和CT图像的前景区域在图像中存在空间和灰度连续的特征,采用最大类间方差法提取较为粗糙的前景区域