论文部分内容阅读
谱聚类(Spectral Clustering)是建立在谱图理论基础上的一种聚类算法.与传统的聚类算法相比,谱聚类能够在任意形状的样本空间上进行聚类且收敛于全局最优解.然而,实际问题中大规模数据集普遍存在,在使用谱聚类对大规模数据集进行聚类时,收敛速度变得十分缓慢,甚至无法在有效的时间内得到聚类结果.并行算法是针对大规模数据集进行处理的一种有效方法.基于Hadoop云计算平台实现大规模数据集的存储和处理是目前实现并行计算的一种高效解决方案.