基于遗传理论的改进数据过采样方法

来源 :计算机系统应用 | 被引量 : 0次 | 上传用户:tlhcm
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对数据分类预测模型的生成中,高度不平衡的训练数据会大幅降低模型的性能,本文提出了一种改进的基于遗传思想的不平衡数据集过采样方法,该方法从生物染色体遗传理论中得到启发,利用近亲生成相似而又不完全相同的新实例来平衡多数类,在保证样本分布不变的前提下,减弱甚至消除不平衡数据对训练结果的偏差影响.最后,通过在公共数据集上的对比实验表明,该方法取得了更高的召回率及G-mean值,证明此改进方法行之有效,所生成模型的综合性能有所提高.
其他文献
本文提出一种新的智能小车主动及被动控制手段,采用STC89C51RC与K66双芯片实现对智能小车的控制.运用蓝牙通信技术实现通过手机端APP控制小车进行基本动作,同时利用超声波测距技术实现小车自动避障.此外,还加入了红外探测传感器以实现小车的自动循迹,结合低功耗的MT9V032摄像头,利用图像识别技术实现了信标灯寻的.实验测试结果表明该移动小车在光照条件适当的情况下具备良好的循迹性能,在小车速度为20 cm/s时避障准确率达到99%,能够以3.1 m/s的稳定速度识别到直径为7.85 m辐射范围内的信标灯