Invariable mobility edge in a quasiperiodic lattice

来源 :中国物理B(英文版) | 被引量 : 0次 | 上传用户:qt393761474
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
We analytically and numerically study a 1D tight-binding model with tunable incommensurate potentials.We utilize the self-dual relation to obtain the critical energy,namely,the mobility edge.Interestingly,we analytically demonstrate that this critical energy is a constant independent of strength of potentials.Then we numerically verify the analytical results by analyzing the spatial distributions of wave functions,the inverse participation rate and the multifractal theory.All numerical results are in excellent agreement with the analytical results.Finally,we give a brief discussion on the possible experimental observation of the invariable mobility edge in the system of ultracold atoms in optical lattices.
其他文献
Pipe-like confinements are ubiquitously encountered by microswimmers.Here we systematically study the ratio of the speeds of a force-and torque-free microswimmer swimming in the center of a cylindrical pipe to its speed in an unbounded fluid (speed ratio)
The characteristic clogging structures of granular spheres blocking three-dimensional granular flow through hopper outlet are analyzed based on packing structures reconstructed using magnetic resonance imaging techniques.Spheres in clogging structures are
In recent years,transition metal silicides have become the potential high temperature materials.The ternary silicide has attracted the attention of scientists and researchers.But their inherent brittle behaviors hinder their wide applications.In this work
Kinetic behaviors of niobium and titanium carbide precipitates in iron are simulated with cluster dynamics.The simulations,carried out in austenite and ferrite for niobium carbides,and in austenite for titanium carbide,are analyzed for dependences on temp
Silicon is a preferred material in solar cells,and most of silicon allotropes have an indirect band gap.Therefore,it is important to find new direct band gap silicon.In the present work,a new direct band gap silicon allotrope of o-Si32 is discovered.The e
Molecular dynamics simulations were used to investigate the influence of pressure on the structural properties and dynamics of magnesium (Mg) during rapid solidification.The dynamics analysis revealed that,with an increase in pressure,the dynamics of Mg m
Most amorphous carbon (a-C) applications require films with ultra-thin thicknesses;however,the electronic structure and opto-electronic characteristics of such films remain unclear so far.To address this issue,we developed a theoretical model based on the
Instantaneous and precise velocity sensing is a critical part of research on detonation mechanism and flow evolution.This paper presents a novel multi-projection tunable diode laser absorption spectroscopy solution,to provide a real-time and reliable meas
Two novel non-isoelectronic with diamond (non-IED) B-C-O phases (tI16-B8C6O2 and mP16-B8C5O3) have been unmasked.The research of the phonon scattering spectra and the independent elastic constants under ambient pressure(AP) and high pressure (HP) proves t
Structural stability in terms of the decomposition temperature in LiMn2O4 was systematically investigated by a series of high-temperature and high-pressure experiments.LiMn2O4 was found to have structural stability up to 5 GPa at room temperature.Under am