功能梯度金属泡沫填充管在冲击载荷下的高效吸能

来源 :中国有色金属学报(英文版) | 被引量 : 0次 | 上传用户:hlp2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
研究功能梯度泡沫填充管(FGFTs)在落锤冲击载荷作用下的变形行为和耐撞性.采用液态工艺制备的闭孔泡沫铝、A356合金泡沫和锌泡沫作为轴向梯度填料,用于制备不同构造的单层和多层结构.结果表明,多层泡沫填充管的变形由低强度部位开始,然后通过应力的逐渐增加在高强度部位中扩展.使用更多的A356合金和泡沫铝层可为梯度结构提供更大的比吸能(SEA),而高强度的锌泡沫对碰撞性能没有积极的影响.由泡沫铝和A356合金泡沫组成的梯度结构在准静态和落锤冲击条件下以对称模式发生连续倒塌.使用锌泡沫会引起对称模式和扩展模式倒塌,样品在动态加载下产生更大的局部变形,在准静态加载下产生更大的局部破裂.Al?A356泡沫填充管具有最高的SEA(10 J/g)和最低的初始峰值应力(σmax=10.2 MPa),是最好的轻质耐撞结构.“,”The deformation behavior and crashworthiness of functionally-graded foam-filled tubes (FGFTs) under drop-weight impact loading were investigated. Closed cell aluminum, A356 alloy and zinc foams fabricated by the liquid state processing were used as axial grading fillers for the manufacture of single-layer and multilayer structures with different configurations. The results indicate that the deformation of multilayer foam filled tubes initiates from the low-strength components, and then propagates in the high-strength components through the gradual increment of stress. The use of more A356 alloy and aluminum foam layers provides greater specific energy absorption (SEA) for the graded structures, whereas the high-strength zinc foam has no positive effect on the crash performance. The progressive collapse of graded structures consisting of the aluminum and A356 alloy foams occurs in a symmetric mode under quasi-static and drop-weight impact conditions. However, the zinc foam causes a combination of symmetric and extension modes as well as greater localized deformation under dynamic loading and greater local rupture in quasi-static loading condition. The Al?A356 foam-filled tubes with a combination of the highest SEA (10 J/g) and the lowest initial peak stress (σmax of 10.2 MPa) are considered as the best lightweight crashworthy structures.
其他文献
我把忠诚写在大地rn我把责任扛在肩rn城市的万家灯火rn乡村的山清水秀rn我用默默无闻的付出rn换来人间大爱悠悠rn城市道路的尽头rn有我们的汗水在流rn一个个建筑工地rn老茧的
期刊
人勤春来早,复工复产忙.河南省孟州市住建局牢牢把握市委、市政府“以防控为前提、以平稳为基石、以发展求长远”的工作总基调和“任务不减、目标不变、标准不降”的总要求,
期刊
制备Ti6Al4V/20CoCrMo与多孔Ti6Al4V生物医用双层复合材料.采用传统粉末冶金技术,以半固态烧结为固结步骤,制备具有致密Ti6Al4V/20CoCrMo表层和多孔Ti6Al4V底层的双层样品,以