《眼球王国奇遇记》

来源 :健康世界 | 被引量 : 0次 | 上传用户:yecha12
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
其他文献
肠道菌群是人体的重要“器官”.工业化世界的发展加速了对肠道菌群研究从“传统结构”向“工业结构”的转变,而纠正肠道微生态失衡已成为解决重大慢性非传染性疾病传播难题的核心策略之一.然而,目前开发的靶向调节肠道菌群结构与功能的传统微生态疗法,如益生元疗法、益生菌疗法和粪菌移植疗法,只有少数被用于临床多发难治性重大慢病的防治,且出现了可控性差、菌群遗传背景不清晰等安全问题.合成生物学技术手段的迭代发展推动了新型微生态药物的研发,成为对重大慢病进行精准识别和精准施策的关键.本文首先以消化系统疾病、代谢性疾病和精神疾
当前针对合成生物学技术的伦理治理已取得初步进展,基于后果主义和义务论的合成生物学伦理研究分别从事先规则制定和事后价值评估的角度为合成生物学技术的伦理治理提供了参考,但由于该技术的不确定性特质,已有的伦理治理方案依然在不同程度上面临科林格里奇困境.本研究认为,还应当寻求一条连接前者和后者,能够贯穿整个合成生物学研究过程的伦理治理路径.合成生物学科研人员作为唯一贯穿技术立项、研究及应用全过程的科研主体,对技术发展中的风险决策以及产品构建等都具有主导性影响.本文认为厘清以合成生物学科研人员为对象的伦理规范,将对
五环三萜皂苷类化合物具有丰富的药理、生理活性,广泛应用于医药、功能食品、保健品、化妆品等领域.目前五环三萜皂苷类化合物的主要获取方式是植物提取,随着合成生物学的发展,利用微生物细胞工厂合成植物天然产物逐渐成为研究热点,它具有生产周期短、工艺简单、环境友好、条件温和等优势,是未来的发展方向.本文结合五环三萜皂苷类化合物的来源及其天然合成途径,综述了典型五环三萜皂苷类化合物的分类、功能活性、结构特点及目前利用微生物细胞工厂合成五环三萜皂苷类化合物的研究现状;分析了部分五环三萜皂苷类化合物合成途径当中的未解析的
期刊
细胞培养肉有望改进当前肉类生产体系,缓解未来粮食资源短缺、公共卫生及动物福利等问题.无论是在研究领域还是在产业市场,细胞培养肉已成为当前热点.欧美国家纷纷启动相关战略部署,大力推动细胞培养肉的发展.然而,细胞培养肉的研发与商业化过程对现行相关法律规范与监管制度带来挑战.欧盟、美国及新加坡等国家及地区积极探寻细胞培养肉在法律规范与监管制度方面的完善与更新.2020年,新加坡更是率先批准细胞培养肉产品入市并发布具体监管措施.我国细胞培养肉在生产技术研发方面已不断取得突破,但在法律规范与监管制度方面的研究探讨相
基因克隆是解析基因功能的重要手段,但仍有很多基因难以克隆,比如高AT含量(>60%)基因组来源的DNA.ExoCET克隆技术通过联合核酸外切酶介导的体外同源重组和大肠杆菌RecET重组酶介导的细胞内同源重组,不仅能从微生物基因组中靶向抓取>100 kb的大片段,而且能高效组装>13个DNA片段,是基因克隆的有力工具,迄今未有利用ExoCET技术从AT含量>63%的基因组克隆大片段的报道.本研究以AT含量为69%的海洋单细胞光合蓝细菌原绿球藻MIT 9301菌株的基因组为研究对象,探究了利用ExoCET技术
期刊
合成生物学研究中,海量的工程化试错实验远远超出传统的劳动密集型研究范式的能力范畴,故建立一个可以实现生命体工程化大批量合成的合成生物学研究平台迫在眉睫.然而目前国内外已建成的工程化平台只能基于少数孤立设备或功能岛实现部分流程,不能满足合成生物学全生命周期的研究需求.基于此背景,在国家、省市相关部门的大力支持下,由中国科学院深圳先进技术研究院牵头建设的“合成生物研究重大科技基础设施”,目前已完成全部立项程序,进入全面实施建设阶段,预计于2023年开展试运营和验收工作.本文将从建设背景、过程、内容、目标和特色
材料-生物杂化体的光驱生物催化,又称为半人工光合作用,利用高效捕获光能的材料与高选择性的生物催化相结合,从而实现光能到化学能高效、高特异性的转化.天然光合系统光能到化学能的转换效率低,进而发展了光能捕获和转换效率更高的人工光合作用,然而人工光合系统很难实现特异性合成高能量密度、高附加值的多碳化合物.基于材料-生物杂化体构建的半人工光合作用,同时具备材料和生物系统两者的优势,实现优势互补,为光能到化学能的转化提供新的机遇和应用.本文详细介绍了材料-生物杂化体的构建方式,杂化体通过光吸收剂与催化剂进行复合,其
期刊