论文部分内容阅读
金融数据序列的参数估计是现代金融学研究的热点之一,也是数理金融学的一个重要研究方向.在缺失数据情形下,本文采用MCMC方法研究了ARMA汇率序列的参数估计问题.首先,将潜变量插补数据方法融入MCMC采样过程,新的MCMC参数估计方法允许序列存在缺失数据.其次,结合潜变量,获取了自回归系数和白噪声方差的共轭后验分布.再次,由于滑动平均系数的共轭后验分布获取困难,构造了一种基于多元回归的参数估计方法.最后,利用Metropolis-Hastings抽样替代Gibbs抽样并融入上述结果,形成了一种新的MCMC参