海量法律文书中基于CNN的实体关系抽取技术

来源 :小型微型计算机系统 | 被引量 : 0次 | 上传用户:pang316860297
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统文本实体关系抽取算法多数是基于特征向量对单一实体对语句进行处理,缺少考虑文本语法结构及针对多对实体关系的抽取算法.基于此,提出一种基于CNN(Convolutional Neural Network)和改进核函数的多实体关系抽取技术—KMCNN(Multi-Entity Convolutional Neural Network Based on Kernel),并将所提技术运用于海量法律文书的实体关系抽取上.KMCNN从抽取大规模历史法律文书的人物关系出发,构建短语有效子树,采用基于改进的核函数来计算短语有效子树的相似度,以实现运用CNN算法对多对实体关系进行挖掘的目标.在真实数据集上的实验表明,所提技术具有较好的抽取效果和较高的计算效率.
其他文献
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
1 基本情况rn2011年以来,党中央、国务院高度重视现代农作物种业发展,国务院和国务院办公厅连续下发《关于加快推进现代农作物种业发展的意见》(以下简称《意见》,国发[2011]
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
针对中小型制造企业(small medium production enterprises,SMPEs)对复杂需求的响应速度普遍比较慢的问题,从调整系统参数合理性的角度提出了一种提高系统响应速度的方法.首
任何植物新品种要得到法律的保护必须符合一定的条件,然后才有可能被授予品种权。《中华人民共和国植物新品种保护条例》(以下简称《新品种保护条例》)第三章第十三条至第十
现实世界中的网络往往会随时间推移逐渐改变,社团演化预测通过分析动态网络数据判断社团的发展趋势,对于理解复杂网络演化规律及其应用具有重要意义.社团演化特征构造从历史
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥