论文部分内容阅读
文本分类是文本信息处理领域一个非常重要的研究方向,为了节省文本分类处理中所需的存储空间和运算时间,在分类之前用高效的算法减少所需分析的数据是非常必要的。该文介绍了一种文本分类中特征降维的方法。和传统的方法不同,该文所涉及的特征是从句子中提取的不同长度的词组,然后用比数比来对其进行特征选择。实验结果表明,该文提出的方法与传统方法相比,提高了文本分类的准确率。