Rational design and synthesis of upconversion luminescence-based optomagnetic multifunctional nanora

来源 :中国化学工程学报(英文版) | 被引量 : 0次 | 上传用户:w313829237
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Optomagnetic multifunctional composite based on upconversion luminescence nanomaterial is regarded as a promising strategy for bioimaging,disease diagnosis and targeted delivery of drugs.To explore a mesoporous nanostructure with excellent water dispersibility and high drug-loading capacity,a novel nanorattle-structured Fe3O4@SiO2@NaYF4∶Yb,Er magnetic upconversion nanorattle (MUCNR) was suc-cessfully designed by using Fe3O4 as core and NaYF4∶Yb,Er nanocrystals as shell.The microstructures and crystal phase of the as-prepared MUCNRs were evaluated by transmission electron microscopy,X-ray powder diffraction and N2 adsorption/desorption isotherms.The Kirkendall effect was adapted to explain the formation mechanism of the MUCNRs.The loading content and encapsulation efficiency of doxorubicin hydrochloride (DOX) could reach as high as 18.2% and 60.7%,respectively.Moreover,the DOX loading MUCNR (DOX-MUCNR) system showed excellent sustained drug release and strong pH-dependent performance,which was conducive to drug release at the slightly acidic microenvironment of tumor.Microcalorimetry was used to quantify the interactions between the carrier structure and drug release rate directly.The heat release rates in the heat-flow diagrams are basically consistent with the DOX release rate,thereby showing that microcalorimetry assay not only provides a unique thermody-namic explanation for the structure-activity relationship of Fe3O4@SiO2@NaYF4∶Yb,Er MUCNRs but also provides powerful guidance to avoid the blind selection or design of drug carriers.Therefore,our work firmly provided a comprehensive perspective for using Fe3O4@SiO2@NaYF4∶Yb,Er MUCNRs as a remark-able magnetic targeted drug carrier.
其他文献
Electrokinetic remediation is a promising method to decontamination of the heavy metals from soils.In this paper,the remediation of a contaminated calcareous soil with Zn,Cd and Pb sampled from around Zanjan province of Iran,was investigated using electro
A series of polymeric ionic liquids (PILs) used as effective heterogeneous catalysts for biodiesel produc-tion via esterification of free fatty acids (FFAs) were effectively prepared by the reaction of poly (ethylene imine) (PEI) polymers with different m
近年来,普鲁士蓝(PB)及普鲁士蓝类化合物(PBAs)用于钠离子电池电极材料方面的研究逐渐深入.作为金属有机框架(MOFs)材料,PB及PBAs是具有可调控的化学组成和物理性质的简单配位聚合物.PB及PBAs可直接作为高性能钠离子电池正极材料,也可以通过与其他材料复合用于钠离子电池正极;此外,利用PB及PBAs作为前驱体制备各类具有纳米结构的金属化合物(如金属氧化物、金属硫化物、金属硒化物和金属磷化物等)及金属化合物复合材料,并用于钠离子电池负极.本文简要介绍了PB、PBAs和以它们为前驱体制备的金属化合
氢能作为一种可燃烧的新型能源,凭借其清洁无污染等优点,被认为是人类从根本上解决能源与环境等全球性问题的理想替代能源.电解水是生产高纯度氢气的重要方法之一,也是现代清洁能源技术的重要组成部分.随着实际需求的不断增长,如何利用高效低耗的电催化剂来提升反应速率,已经成为当前新能源领域的研究重点之一.电解水反应由阴极析氢反应(HER)和阳极析氧反应(OER)两个半反应组成,其中HER反应相对容易进行;而相比于HER反应,OER反应动力学缓慢,是影响电解水效率的主要原因.为了提高电解水制氢的能量转化效率,高效OER
钛硅碳(Ti3 SiC2,TSC)是一种兼具金属材料和陶瓷材料优异性能的新型三元化合物MAX相.Ti3 SiC2作为高导电功能涂层具有很大的应用潜力,近年来受到越来越多的关注.Ti3 SiC2涂层的制备技术在不断改革优化,主要有五种常见制备工艺,分别是化学气相沉积法(CVD)、物理气相沉积法(PVD)、固相反应合成法(Solid-state reaction)、气溶胶沉积法(ADM)和热喷涂法(Thermal spraying).Ti3 SiC2涂层的性能在很大程度上与其纯度相关,通常制得的Ti3 SiC
为研究厦门、湛江和青岛的潮差区和全浸区的腐蚀规律,通过现场暴露试验,获得了10种钢样(含碳钢和低合金钢)暴露7a的腐蚀结果,采用线性拟合的方法对数据进行了处理.结果 表明:在3个地点,腐蚀速率的基本规律为青岛>湛江>厦门,腐蚀速率与海生物污损密切相关.在3个暴露地点,全浸区前期腐蚀量低于潮差区而后期腐蚀量增速高于潮差区.在厦门暴露2a时,全部试样在2个区带的腐蚀率出现逆转,而在湛江和青岛,在7a时几乎所有试样均出现逆转.在厦门潮差区,合金元素的加入对提升钢的耐蚀性无明显的效果,甚至存在负面影响;在湛江潮差
太阳能选择性吸收涂层是将太阳辐射选择性吸收转化成热能的材料.为更大限度地利用太阳能,高温太阳能选择性吸收涂层成为提高光热转化效率的关键部件.碳化物超高温陶瓷因具有良好的光学性能和高温稳定性而成为优选材料.目前,很多研究者已通过磁控溅射法、热喷涂法、溶胶凝胶法和激光涂覆法等方法制备了多种碳化物陶瓷基太阳能选择性吸收涂层,并且做了大量的工作来优化其性能.本文综述了碳化物陶瓷基太阳能选择性吸收涂层的研究进展,介绍了太阳能光谱选择性的要求及其选择性吸收的基本原理,总结了碳化物陶瓷基太阳能选择性吸收涂层的制备方法、
新材料是国民经济高质量发展的物质基础和建设现代化经济体系的战略支撑,是决定未来国家竞争力的战略性和基础性领域.重视和发挥企业在新材料自主创新中的主体作用,有利于引领重点产品不断更新换代,促进新兴产业持续转型升级;有利于及时应对国际国内新形势变化,提升新材料产业基础保障能力;有利于形成科技自立自强战略支撑,构建国际国内双循环发展格局.本文系统总结了国内新材料企业发展现状及其在科技创新中发挥的重要作用,梳理了新材料企业在原始创新及自主保障能力、创新机制及发展模式、科技创新发展环境等方面面临的问题及挑战.同时聚
微流体技术是一种精确操控和检测微量流体的新兴技术,广泛应用于生物、化学、材料等领域的实验及工程中.液体弹珠作为一种新兴的数字微流体平台在近几年快速发展.它是一种将疏水的微纳米级颗粒包裹在液滴表面形成的软物质,体积通常在几微升到几百微升之间.区别于构建特殊表面微结构或化学改性制备的超疏水表面,液体弹珠是通过颗粒层阻隔内部液体与载体的微观接触,构建类似于莱顿弗罗斯特液滴的结构来实现微量液体在固体或液体表面不润湿且稳定存在的目的.目前的研究已经证明液体弹珠拥有独特优越的物理性能,如液体弹珠表面的颗粒层将固-液接
磷酸镁水泥由过烧氧化镁和可溶性磷酸盐组成,是一种新型的水硬性胶凝材料.它早期强度高、收缩小、抗硫酸盐侵蚀能力强,能够与硅酸盐水泥基材料形成较强的粘结力,但其耐水性较差,原材料成本较高.因此,各类矿物掺合料如矿渣、粉煤灰、偏高岭土等被尝试用来取代部分原材料.在适当的掺量与取代方式下,矿物掺合料能够延缓凝结时间,提高抗压强度,并且能够改善耐水性.此外,氧化镁与磷酸盐的物质的量比、水胶比等也决定着磷酸镁水泥的性能.本文对磷酸镁水泥的水化机理、抗压强度、粘结强度、耐久性、体积稳定性进行了总结,指出了现有研究中的不