论文部分内容阅读
针对仅采用局部或全局信息无法快速准确分割灰度不均匀图像的问题,提出了一种基于局部和全局信息的自适应水平集图像分割模型。首先,利用图像局部信息和全局信息建立局部能量项和全局能量项,并且利用演化曲线轮廓内外小邻域的灰度均值差作为自变量,建立了权重函数模型,实现了局部能量项和全局能量项之间权重的自适应调整,提高了模型分割灰度不均匀图像的效率和准确性。其次,提出了一种新的能量惩罚项,避免了水平集函数的重新初始化,增强了数值计算的稳定性。最后,为验证模型的优越性,将模型与CV模型、LBF模型和LGIF模型进行