Efficient acidic oxygen evolution reaction electrocatalyzed by iridium-based 12L-perovskites compris

来源 :能源化学 | 被引量 : 0次 | 上传用户:rainbow03262009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Development of cost-effective and highly active oxygen evolution catalysts operating well in acidic media is a critical challenge in proton exchange membrane water electrolysis.Herein,we present a class of iridium-based 12L-perovskites (Ba4MIr3O12;M =Pr,Bi,Nb) as novel low-iridium electrocatalysts for oxygen evolution reaction under acidic conditions.These 12L-perovskites contain trinuclear face-shared IrO6 octahedral strings-unique subunits that are not found in the previously-reported iridium-based electrocatalysts.The catalytic activities of 12L-perovskites (Ba4MIr3O12) are found to be related to the location of O 2p-band center,which is influenced by the B-site nonprecious element (i.e.,Pr,Bi or Nb).Our experimental results show that Ba4PrIr3O12 is the most active electrocatalyst among the materials we synthesize,and contains 55% less iridium than the benchmark catalyst IrO2,while exhibiting higher catalytic activity.In the presence of Ba4PrIr3O12,transient leaching process of Ba and Pr takes place during electrochemical process,contributing to the surface reconstruction of the pristine catalysts.Further ex perimental results reveal that the formation of under-coordinated IrOx-rich surface and easier generation of active intermediate Irv are mainly responsible for the good activity of Ba4PrIr3O12.
其他文献
As an efficient and environmental friendly energy storage system, lithium battery has been integrated into daily mobile life [1].Lithium batteries are becoming indispensable to all types of electronic products such as laptop computers, mobile phones, digi
Nickel-rich layered oxides have drawn sustainable attentions for lithium ion batteries owing to their higher theoretical capacities and lower cost.However,nickel-rich layered oxides also have exposed several defects for commercial application,such as unco
The application of commercial carbon fiber cloth (CFC) in energy storage equipment is limited by its low specific capacitance and energy density.By a simple one-step activation treatment,the specific surface area of CFCs with porous structure can be incre
MXene is a rising star of two-dimensional (2D) materials for energy relative applications,however,the traditional synthesis of MXene etched by hazard HF acid or LiF+HCl mixed solution is highly dangerous with the risk of splashing or pouring liquid soluti
Lithium-sulfur batteries (LSBs) hold great potential for large-scale electrochemical energy storage applications.Currently,the shuttle of soluble lithium polysulfide (LiPSs) intermediates with sluggish conversion kinetics and random deposition of Li2S hav
Industrial propane dehydrogenation (PDH) catalysts generally suffer from low catalytic stability due to the coke formation onto the catalyst surface to cover the active sites.The exploitation of an efficient catalyst with both high catalytic selectivity a
Molybdenum phosphide (MOP) catalyst has been widely applied in hydrogenation reactions,while the preparation of unsupported MoP catalysts with ultra-small size and large specific surface area (SBET) is still challenging.Herein,we have provided a facile me
Polymeric organic battery materials are promising alternatives to the transition-metal-based ones owing to their enriched chemistries.However,the flammability of organic compounds brings in serious concern on battery safety.In addition to use flame-retard
Developing the highly active,cost-effective,environmental-friendly,and ultra-stable nonprecious electrocatalysts for hydrogen evolution reaction (HER) is distinctly indispensable for the large-scale practical applications of hydrolytic hydrogen production