【摘 要】
:
The field of chiral plasmonics has registered considerable progress with machine-learning (ML)-mediated metamaterial prototyping, drawing from the success of ML frameworks in other applications such as pattern and image recognition. Here, we present an en
【机 构】
:
InstituteofFundamentalandFrontierSciences,UniversityofElectronicScienceandTechnologyofChina,Chengdu6
【出 处】
:
PhotonicsResearch
论文部分内容阅读
The field of chiral plasmonics has registered considerable progress with machine-learning (ML)-mediated metamaterial prototyping, drawing from the success of ML frameworks in other applications such as pattern and image recognition. Here, we present an end-to-end functional bidirectional deep-learning (DL) model for three-dimensional chiral metamaterial design and optimization. This ML model utilizes multitask joint learning features to recognize, generalize, and explore in detail the nontrivial relationship between the metamaterials’ geometry and their chiroptical response, eliminating the need for auxiliary networks or equivalent approaches to stabilize the physically relevant output. Our model efficiently realizes both forward and inverse retrieval tasks with great precision, offering a promising tool for iterative computational design tasks in complex physical systems. Finally, we explore the behavior of a sample ML-optimized structure in a practical application, assisting the sensing of biomolecular enantiomers. Other potential applications of our metastructure include photodetectors, polarization-resolved imaging, and circular dichroism (CD) spectroscopy, with our ML framework being applicable to a wider range of physical problems.
其他文献
Effects of self-steepening (SS) of chirped Gaussian pulses on optical fiber communication system using midway optical phase conjugation (OPC) are analyzed. Dynamic evolution of the ultrashort pulses is simulated numerically. It is found that OPC cannot co
The performances of two liquid level sensors based on long-period fiber gratings are studied. The long-period gratings (LPGs) have similar characteristics (length and period), but are fabricated with two photosensitive B-Ge co-doped fibers with different
基于2011年6月1日至16日先进微波扫描辐射计(AMSR-E)的观测资料,采用改进的主成分分析算法,对欧洲陆地区域的无线电频率干扰(RFI)进行识别和分析。研究发现影响英国和意大利的X波段RFI源主要是稳定的、持续的地面主动源,而影响欧洲其他国家的RFI则主要是反射的静止电视卫星信号对星载微波被动传感器观测的干扰。源于静止电视卫星的RFI出现位置和强度随时间周期性变化,在欧洲陆地多出现在星载微波辐射计升轨观测上,降轨观测则几乎不受其干扰。RFI出现位置和强度与星载微波辐射计扫描方位角和观测视场相对静止电
在诺瓦研究计划经理R. Godwin称为“加重发射”试验中,部分完成的劳伦斯·利弗莫尔国家实验室的“诺瓦”激光器,于1984年6月29日创造了57兆兆瓦激光峰值输出的世界新纪录,其时,10束系统中的8束同时点燃。
在动态光散射颗粒测量时, 为了从含噪的自相关函数数据中准确地反演出颗粒粒度分布, 对Tikhonov正则化算法进行改进, 将噪声作为一个独立的未知变量应用到正则化方程中进行粒度反演.在计算过程中, 相应增加方程中各系数矩阵的行数和列数, 对求解的粒度分布数值则仍取其原来方程的行数和列数, 从而达到对部分噪声的剔除作用.不同噪声水平下的颗粒粒度反演结果表明, 改进后的算法能够显著提高低信噪比动态光散射数据粒度反演结果的准确性, 适用于宽分布较大粒径的颗粒粒度反演.
目前有十多家最大的外国公司[菲利浦、索尼、吉布斯公司、汤姆森无线电公司、德律风 根等]正在积极地研究激光电视唱机。这些公司不断地进行各方面的工作:改进唱机,使用新的记录和再现方法,提高可靠性,降低电视放象系统的价格。最新的研究是利用全息照相的方法来记录和再现声象信息、用“转动的”He-Ne激光束照射固定不动的唱片来再现图象。研制不动唱盘系统的初步资料表明,这种情况下的记录密度为价格稍低的转动唱盘系统记录密度的三倍。