论文部分内容阅读
在大数据环境下,针对传统恶意文件检测方法对经过代码变种和混淆后的恶意文件检测准确率低以及对跨平台恶意文件检测通用性弱等问题,提出一种基于图像纹理和卷积神经网络的恶意文件检测方法。首先,使用灰度图像生成算法将Android和Windows平台下可执行文件,即. dex和. exe文件,转换成相应的灰度图像;然后,通过卷积神经网络(CNN)算法自动提取这些灰度图像的纹理特征并加以学习训练,从而构建出一个恶意文件检测模型;最后,使用大量未知待检测的文件去验证模型检测准确率的高低。通过对大量的恶意样本进行实