基于PSO—SVR的电力负荷预测

来源 :佳木斯大学学报(自然科学版) | 被引量 : 0次 | 上传用户:gedebao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
电力系统负荷预测精度直接决定了预测模型的质量.为了降低预测模型输出结果的预测误差,提出了粒子群算法优化支持向量机回归这一智能预测方法.通过对环境温度、节假日、工作日、日期的采集与分析作为模型的输入,以日平均负荷作为模型的输出.最后,通过仿真,对引入粒子群算法的支持向量机回归模型的预测结果进行对比分析.结果表明:优化后的智能模型取得了更为理想的预测结果.
其他文献